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Quantum Hydrodynamic Theory (QHT)   

• Purely classical theories fail to 
describe optical response of 
very small plasmonic nano-
particles or nearly touching 
plasmonic components. 

• QHT provides an excellent 
method to study both near-
field and far-field properties of 
multiscale plasmonic systems.  

• QHT can accurately and 
efficiently describe: 

 Plasmon resonances  Electron spill-out   Retardation effects 
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C. Ciracì and F. D. Sala, Phys. Rev. B 93, 205405 (2016).  
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𝐅 = 𝛻𝑛 

• 𝐺[𝑛] = 𝑇TF[𝑛] + 𝑇vW[𝑛, 𝛻𝑛] + 𝑣𝑋𝐶[𝑛].   

𝛻 ∙ 𝐅 = 𝛻2𝑛 ⇒ 

𝑒𝑛𝑜
𝑚𝑒

𝛻
𝛿𝐺

𝛿𝑛
1

+ (𝜔2 + 𝑖γ𝜔)𝐏 = −𝜀𝑜𝜔𝑝
2𝐄 

• By multiplying the above equation with the test function 𝐏  and integrating 
by parts gives the following weak form:   

• It allows us to avoid calculating the gradient of the energy functional and 
the derivatives are distributed over the test function. 

𝛿𝑇vW
δ𝑛

1

= 𝐸ℎ𝑎0
2
1

4

𝛻𝑛0 ∙ 𝛻𝑛1

𝑛0
2 +

𝛻2𝑛0

𝑛0
2 𝑛1 −

𝛻𝑛0
2

𝑛0
3 𝑛1 −

𝛻2𝑛1
𝑛0

 

 −
𝑛𝑜𝑒

𝑚𝑒

𝛿𝐺

𝛿𝑛
1

(𝛻 ⋅ 𝐏 ) + [(𝜔2 + 𝑖𝛾𝜔)𝐏 + 𝜀𝑜𝜔𝑝
2𝐄] ⋅ 𝐏 𝑑𝑉 = 0 

• 𝑇vW contains second order derivatives. We introduce a working variable F, as: 
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• Full 3D implementation of such systems is 
computationally extremely demanding. 

• All fields can be decomposed in terms of azimuthal 
mode number, 𝑚 ∈ ℤ. For a vector field 𝐯: 

𝐯 𝜌, 𝜙, 𝑧 =  𝐯 𝑚 𝜌, 𝑧

𝑚∈ℤ

𝑒−𝑖𝑚𝜙 

C. Ciracì et. al.,  Opt. Express, 21, 9397 (2013).  

• This method is termed as 2.5D formulation and its advantage is that an 
𝑁𝜌 × 𝑁𝑧 × 𝑁𝜙 sized problem reduces to a problem of size 𝑁𝜌 × 𝑁𝑧. 

3D problem reduces to (2𝑚max + 1) 2D problems.  

• Exploiting symmetry of the structures 
makes the task much easier. 

• Macroscopic plasmonic systems with subnanometer 
gaps: a multiscale problem. 
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2𝜋 (𝛻 × 𝐄 𝑚 ) ⋅ (𝛻 × 𝐄 𝑚 ) − (𝑘𝑜
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2𝐏 𝑚 ) ⋅ 𝐄 𝑚 𝜌𝑑𝜌𝑑𝑧 = 0 

2𝜋 −
𝑛𝑜𝑒

𝑚𝑒

𝛿𝐺

𝛿𝑛
1

𝑚
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Thus, the final system of equations to solve for the unknown variables E, P and 
F takes the expressions: 

𝛻 ∙ 𝐯 𝑚 ≔
1

𝜌
+

𝜕

𝜕𝜌
𝑣𝜌
(𝑚)

−
𝑖𝑚

𝜌
𝑣𝜙

𝑚
+

𝜕

𝜕𝜌
𝑣𝑧
(𝑚)

 

Maxwell Equations and the polarization equations are written according to the 
following definitions: 

𝛻 × 𝐯 𝑚 ≔ 𝜌 −
𝜕𝑣𝜙

𝑚

𝜕𝑧
−
𝑖𝑚

𝜌
𝑣𝑧
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+ 𝜙 
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𝑚

𝜕𝜌
+ 𝑧 

𝑣𝜙
𝑚

𝜌
−
𝜕𝑣𝜙

𝑚

𝜕𝜌
+
𝑖𝑚

𝜌
𝑣𝑧

𝑚
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Thus, the final system of equations to solve for the unknown variables E, P and 
F takes the expressions: 

• Thus, reducing extremely large computational load in terms of memory and 
processing time.  

• For specific cases, the cylindrical harmonic expansion converges rapidly and 
therefore it can be truncated at a relatively small 𝑚 = 𝑚max  (For 
subwavelength structures 𝑚max < 3). 

• A parity condition relating positive and negative azimuthal number exists 
which further reduces the computational load by a factor of 2.  
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Plasmonic Nanoshell: Example 

• By using the Quantum Hydrodynamic Theory 
we study the optical properties of plasmonic 
nanoshells with vacuum core placed in vacuum. 

• We investigate the nanoparticle under plane 
wave excitation by using the FEM 
implementation based on 2.5D technique. 

• The nanoparticle with inner radius R1=2nm and 
outer radius R2=3.72nm is modeled with a 
Drude dielectric function. 

𝒌 

R1 

R2 



COMSOL Simulations To Study Nonlocal Properties of an Au Nanoshell Using 
Quantum Hydrodynamic Theory 

11 

𝒌 

y 

z 

2.93 eV 

5.04 eV 

TMz polarized incident wave 

Plasmonic Nanoshell: Example 



COMSOL Simulations To Study Nonlocal Properties of an Au Nanoshell Using 
Quantum Hydrodynamic Theory 

12 

𝒌 

TMz polarized incident wave 

2.93 eV 

5.04 eV 

3.10 eV 

5.48 eV 
5.24 eV 

3.01 eV 

Plasmonic Nanoshell: Example 
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At lower energy mode (E=2.93 eV) 

Plasmonic Nanoshell: Example 



COMSOL Simulations To Study Nonlocal Properties of an Au Nanoshell Using 
Quantum Hydrodynamic Theory 

NormE n 

14 

At higher energy mode (E=5.04 eV) 

Plasmonic Nanoshell: Example 



COMSOL Simulations To Study Nonlocal Properties of an Au Nanoshell Using 
Quantum Hydrodynamic Theory 

Plasmonic Nanoshell: Example 

15 

14378 domain elements 
675 boundary elements. 

32 GB memory is required  

44852 domain elements 
1271 boundary elements. 

10 GB memory is required  

Near field properties: Far field properties: 

R1 

R2 
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TMz polarized incident wave 

4.53 

𝒌 

7.69 

Plasmonic Nanoshell: Example 
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TMz polarized incident wave 

4.53 

𝒌 

4.61 4.52 

Plasmonic Nanoshell: Example 
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• QHT method can describe the full range of effects going from the 
nonlocal/spill-out effect up to retardation effects.  

• We have implement the method using 2.5D technique which allows 
to efficiently compute the absorption spectra of the axisymmetric 
structures by remarkably reducing the computational load.   

• We found that Lagrange elements work pretty well in the domain 
where fields are continuous and they give much more “stable” 
solutions.  

• FEM allows us to use different type of mesh for a geometry. We 
used a rough mesh in the continuous domain and a fine mesh at 
the metallic surface/boundaries.   
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