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pressor sensors 
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Open research questions 

To improve our understanding and to design better sensors,  

we need a simulation platform able to model all relevant physics! 
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Relevant physics 

• 3D mechanics of thin film 

membranes with topography 

• thermal stresses 

• (other physics for other 

sensors, e.g. gas sensors) 

• 3D field effect transistor 

• electrostatics 

• charge transport We chose COMSOL for the ability to model 

these and much more (open to other sensors) 
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Modeling a 3D carbon nanotube FET 
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Benchmark model 

metal  (0nm) 

metal  (0nm) 

SiO2  (0.7µm) 
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How is the I-V characteristic of such a device computed?  
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The self-consistent procedure 

• Iterate between screening eqs. (Schrödinger) and Poisson eqs. till potential convergences 

• After convergence, solve transport eqs. 
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The challenge 

6
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The scale range is from 1Å to 10µm (5 orders) and geometry is 3D! 

The challenge/bottleneck is iterating over the 3D Poisson equation 

(1’000-10’000 iterations needed for an I-V characteristic) 
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The solution 

The solution is: 

• compute elementary solutions from which an arbitrary solution 

can be obtained as a (cheap) combination 

• accelerate (or approximate) the computation of each 

elementary solution 

The challenge/bottleneck is iterating over the 3D Poisson equation 

(1’000-10’000 iterations needed for an I-V characteristic) 
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Breakdown into elementary solutions 
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Local adaptive mesh refinements 

https://www.comsol.com/blogs/using-adaptive-meshing-local-

solution-improvement/ Walter Frei | December 27, 2013  

Key trick to accelerate the Laplace problem:  

Local adaptive mesh refinements, because we only care about the 

potential at contacts! 
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Adaptive mesh refinement comparison 

Functional (Local refinement) 
Number of DoF solved for: 42’031 … 158’820. 

Solution time: 57 s. 

L2 Norm (Global refinement) 
Number of DoF solved for: 139’020 ... 1’651’281. 

Solution time: 259 s. (4 minutes, 19 seconds) 

5-10× improvement over global mesh refinement! 
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Laplace problem: summary 

Gate response Source | Drain response 
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Breakdown into elementary solutions 
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Local adaptive mesh refinements 

Key trick to accelerate the Poisson GF problem:  

Local adaptive mesh refinements plus an interpolation scheme to 

skip redundant computations 
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Poisson GF sub-problem: summary 

“Point” (Gaussian) probe charge at x/L=0.76 

1Å spatial resolution reached at the charge site! 
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The “Warp” interpolation procedure 
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• Principle: if the potential due to “left” and 

“right” positions of the probe charge are 

known, the potential for a probe in the 

“middle” is obtained by shifting the 

“left”&”right” contours in the middle 

“left” 

“right” 

“middle” 
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The “Warp” interpolation results 
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Within a 1% relative accuracy the “warp” interpolation reduces the 

number of probe charge positions (N) from ~7’500 to 97 (~80×)  
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Comparison of full 3D vs GF Poisson solver 

19 

350× speed-up is possible in 

computing a 200 point I-V curve 

(assuming 100 self-consistent 

charge iterations)! 
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Conclusions and outlook 
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L. Jenni et al., Micr. Eng. 153, 105 (2016) [10.1016/j.mee.2016.03.013] 

Outlook 

• Integrate the quantum transport solver to get I-V characteristics 

• Model the mechanical/chemical aspects of the sensors 

• Apply the modeling platform to various sensors based on carbon nanotubes 

L. Kumar, Eurosensors 2017 

Conclusions 

• Significant speed-up (350×) obtained in simulating 3D electrostatics by 

utilizing the Green’s Function approach suggested here (projected for 200 I-V 

point computation for 100 Poisson solutions per I-V point) 
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