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Abstract: This paper investigates the forward prob-
lem of crack detection on conducting objects via ed-
dy-current inspection in a stochastic framework. Un-
like the majority of pertinent works that are suitable
only for deterministic problems with precisely de-
scribed parameters, we follow a line of work that
takes into account potential uncertainties characteriz-
ing the geometric properties of the defects, which
eventually influence the corresponding outcomes. As
the implementation of standard techniques, such as
the Monte-Carlo approach, require elongated simula-
tion times (even of the order of days for 3D geome-
tries), the suggested methodology alternatively de-
rives polynomial-chaos expansions of the random
quantities of interest by exploiting efficient sparse-
grid quadrature rules, thus enabling significant reduc-
tion of the involved computational cost. The numeri-
cal results verify that, in this way, COMSOL® capa-
bilities can be further expanded to provide reliable
statistical characterization of eddy-current inspection
problems with variability in their parameters.

Keywords: AC/DC module, crack detection, eddy-
current testing, polynomial chaos, sparse grids, un-
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1. Introduction

Detection of defects, such as cracks, in metallic
configurations via eddy-current inspection comprises
an active research area of non-destructive evaluations
with increasing interest [1, 2]. In essence, the pres-
ence of a crack can be identified by observing the
perturbation of a coil’s impedance, with respect to the
case of the “flawless” structure, when the position of
the coil changes in the vicinity of the crack. Due to
the importance — from an engineering viewpoint — of
the aforementioned problems, various approaches
have been developed for the solution of the forward
problem. The combination of the finite element

method (FEM) and the boundary element method
(BEM) is proposed for eddy-current problems in [3],
adopting a formulation that depends on the magnetic
vector potential A and the scalar potential ¢. A
boundary element approach is presented in [4] for
handling ideal plane cracks (i.e. defects with negligi-
ble opening). The work of [5] considers the vector-
potential boundary-integral approach for studying
eddy-current interactions with cracks, and explores
cases where the skin depth is small, compared to the
characteristic size of the defects. In [6], the source
terms for an integral equation to be solved around the
crack is obtained by imposing the current density to
be the opposite of the unperturbed one, so that a van-
ishing total current inside the crack region is ensured.
A FEM that considers changes in the crack shape is
derived in [7], while various developments of the
BEM that enable the significant reduction of the
computational time are presented in [8], in the case of
narrow cracks. The work of [9] pertains to a revision
of an existing boundary element model for ideal or
narrow cracks, and [10] applies edge elements using
COMSOL®), in the context of benchmark problems.
Finally, the A-formulation for the eddy-current prob-
lem is thoroughly studied in [11], neglecting the
crack thickness and applying the FEM.

The aforementioned methodologies assume that
the parameters of the investigated problem, either
geometric or electric, are known in an exact fashion.
If, from a more realistic viewpoint, one or more key
factors display a degree of randomness, then the
quantities of interest (e.g. the change of the coil’s
impedance) become stochastic, and their reliable
characterization requires more sophisticated treat-
ment. Monte-Carlo (MC) methodologies provide a
standard line of work that enables the extraction of
the statistical properties of random quantities, as long
as a significant amount of output samples is available
[12]. The latter is necessary due to the slow conver-
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gence of the algorithm. Evidently, when time-
consuming simulations are required for obtaining
these samples, MC solutions become computationally
inefficient. Alternative techniques that exploit the
representation of random quantities via polynomial
series [13] have been proven to perform more effi-
ciently than MC methods, especially when combined
with other numerical schemes, e.g. sparse-grid inte-
gration [14]. In essence, such methodologies are
known to provide reliable results by requiring signifi-
cantly fewer samples than MC approaches in many
cases, reducing the involved computational times.

In this paper, we are interested in the case of ed-
dy-current inspection of cracks, when geometric un-
certainties need to be taken into account. Till today,
problems involving eddy currents are rarely dealt
with in a stochastic framework (see, for example,
[15] for the case of eddy currents in the human body).
As we do not wish to limit the applicability of this
approach by adopting common simplifications, such
as assumptions of ideal or narrow cracks, FEM mod-
eling via the COMSOL® software is exploited for the
calculation of the coil’s impedance change. Despite
the relatively simple geometric setup, the fine geo-
metric features of the cracks call for locally refined
meshes, leading to non-trivial simulation times. Con-
sequently, the need for computationally efficient cal-
culations rules out MC methodologies, leading to
more preferable solutions based on polynomial-chaos
(PC) expansions [13]. Uncertainty quantification is
performed here in a non-intrusive manner, by em-
ploying spectral projection for the calculation of the
expansion coefficients, and adopting sparse-grid in-
tegration for the case of multiple stochastic inputs.
Key statistical measures, such as the expected value
and the standard deviation of the impedance change,
can be easily computed considering only the expan-
sion coefficients. As we show, the reliable descrip-
tion of the problem’s statistical properties becomes
possible with only a fraction of MC’s computational
cost. A series of numerical comparisons strongly
suggest that, by carefully conducting FEM studies
with the COMSOL® software, efficient solutions of
stochastic problems involving eddy-current defect
detection can be derived.

2. Problem Description

The considered eddy-current problems are com-
monly described in terms of the vector potential A,
according to the following mathematical model:

coil
plate \l/

<€— (defect

A—y

Figure 1. Typical problem configuration in eddy-current
inspections: a coil over a crack in an aluminum plate.

V><(%V><AJ+(ja)G—a)2g)A=JY @)
where J; stands for impressed current sources, @ is
the angular frequency, o is the conductivity, ¢ is the
electric permittivity, 4 is the magnetic permeability,
and j:x/—T . For this type of studies, the AC/DC
module of COMSOL is the most suitable choice for
performing the necessary simulations. Regarding the
boundary conditions, magnetic insulation is assumed
at the enclosing boundaries of the computational do-
main, described by nxA =0, where i is the unit
vector normal to the boundary.

As a representative test case, a 150mm x 150 mm
x 10 mm aluminum plate (electric conductivity of
37.74 MS/m) is considered, with a x, x y, X z, crack
positioned at its center point. The inner and outer
radii of the 405-turn coil are selected as Ry, = 5 mm,
Ry = 10 mm, respectively. The coil’s lift-off with
respect to the plate is set to 1 mm, and its height is
selected 4 mm. The coil is excited by a 10 kHz cur-
rent, and the assigned density has the form

] —yX+xy
J=J —= )
0 /x2+y2

where J; is the selected current density magnitude,
calculated as the overall number of ampere-turns,
divided by the area of the coil’s vertical cross-
section.

According to the eddy-current testing methodolo-
gy, we need to record the changes in the coil imped-
ance, when the position of the latter is modified with
respect to the defect. Instead of altering the position
of the coil, which necessitates the proper adjustment
of the excitation current, the coil’s movement can be
equivalently taken into account by simply performing
a similar change to the defect’s position. Further-
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more, two simulations are conducted for each place-
ment and the coil’s impedance with and without the
presence of the defect is calculated. The impedance is
derived via the integral

szl—?ijA~JdV 3)

which is computed by COMSOL® (V. stands for the
volume occupied by the coil).

3. Polynomial-Chaos Models

In a completely deterministic context, the imped-
ance change AZ = AR + jAX is normally a function of
the coil position r. If the problem is stochastic, then
AZ becomes dependent on a number of d random
variables (which are considered independent herein),
represented by the vector E= [, & ... g“d]T. To facili-
tate the computation of the quantities of interest,
truncated polynomial series are used for the represen-
tation of the change in the resistance and reactance
AU, U e {R, X}:

AU(r,8) = Zcf (¥, @©) “

In (4), C/(r) are expansion coefficients that depend
on the coil position only, ¥,(§) are multivariate pol-
ynomial functions, and P + 1 is the number of the
expansion terms, determined by

pr1=P*d)! (5)

pld!

where p is the selected polynomial order of the series
approximation. The ¥ functions are constructed as
products of univariate expressions,

¥, @)=y, (&) v, &) v, E) 6
where
a]“+a§+...+a§=|a/|£p (7)

Furthermore, the ¥,(€) functions form an orthogo-
nal basis, with respect to the inner product

(f©),g@)= J.Ql, /() @)p©)dg ®

where Q7 is the random space that the ¢ variables

span, and p(&) = pi(&)- pa(&) -...- pa(&y) is the joint
probability density function. Consequently, we have

(¥,©.%,©)=v.@ 5 ©)

where |¥, @) =(¥,(&),¥,(&) and 9 is the Kron-
ecker delta.

In this paper, we are mainly concerned with un-
certainties pertinent to the geometric properties of the
investigated crack. In essence, the ¢ variables are
considered to be uniformly distributed with & € [-1,
1, i=1, ..., d (hence, Q= [-1, 1] and p(&) = 0.5%,
which are mapped to the original — geometric — vari-
ables via linear functions. For instance, if L is a geo-
metric dimension of the crack within the range [Lui,,
Lax] and associated with the &, variable, then the
following formula is used:

L..+L Lo —Lo
— max min + max min 10
Fon ey S S S (10)

L(s,)
Note that, due to the uniformly distributed random
variables, the optimal choice for the basis functions is
to use Legendre polynomials for their construction
[13].

4. Calculation of Expansion Coefficients and
Extraction of Statistics

The C/(r) coefficients involved in the PC ex-
pansions can be calculated in a non-intrusive fashion
(i.e. without modifying the deterministic solver),
through projection on every basis function, via

(AU (r,é),‘I’k(é))
| @

Evidently, the above formula requires the implemen-
tation of a quadrature rule for the computation of the
numerators (the denumerators can be obtained analyt-
ically). The numerical computation of integrals is a
subject of general interest, and several techniques
have been developed till today. Normally, a quadra-
ture rule is applied in the form

(AU (r,8),Y¥, (é)) =
(e AU(re? ), () p(e) 12)

i=1

C/(r)= , k=0,...P (11)

where &? denotes a pre-determined set of nodes on
Q% and w(&"”) is the corresponding set of weights. In
this paper, we consider integration rules that are
based on the Kronrod-Patterson (KP) nodal sets. For
multi-dimensional problems, sparse grids based on
the Smolyak algorithm [14] constitute more attractive
choices than full — tensor based — grids, as they are
capable of providing accurate predictions with re-
duced sets of nodes and, therefore, result in smaller

Excerpt from the Proceedings of the 2017 COMSOL Conference in Rotterdam



computational times (recall that each node in the ran-
dom space corresponds to a full-wave simulation). In
particular, we perform calculations based on delayed
KP nodes [16], which means that the quadrature
nodes are repeated for certain construction levels of
the grid, controlling the growth of the grid size.

More specifically, when performing integration
on sparse grids, one needs to evaluate the integrated
quantity on the nodes determined by

0= |J (0] x0px..x0}) (13)

k+1<]i|<k+d

where the parameter k denotes the level of construc-
tion of the Smolyak grid, and ©, =1{§,0,,...,6, }
denotes the set of m; nodes of the 1D quadrature rule.
Some representative examples of 2D sparse grids are
shown in Fig. 2, and compared against a full grid.
The corresponding quadrature rule is then described

by

o d-1 - .

I= -1 "*d'( J U'QU>®...0U"
k+1£\i§k+d( ) k+d—|i| ( )
(14

where U’ denotes the i-th level 1D quadrature rule.
Evidently, (14) considers specific combinations of
product formulae, in contrast to the tensor product

1, =U"®U" ®..QU" (15)

which involves m, m, ...m, nodes.

After performing the necessary projections, fun-
damental statistical properties of the impedance
change, as described by the expected value and the
variance, are deduced from the PC coefficients:

E[aU]=C (16)
varlaU]=Y () @ an

It is stressed that the PC expansions constitute a
complete representation of the corresponding random
quantities, providing more information than just (16),
(17), as will be verified by the numerical results.

5. Matlab Scripting

To facilitate consecutive impedance evaluations,
which are necessary both for MC and PC approaches,
the COMSOL® model of the investigated problem is
exported as a Matlab function, whose input variables
are the coil’s position and the geometric dimensions
of the plate’s defect. For this reason, the function’s
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Figure 2. Comparison of various two-dimensional sparse
grids with a full grid.

first line is formulated as

function out = coil defect (m, xc, yc, zc)

and the corresponding directives for the inputs are
modified, as following:

model.param.set ('m', [num2str (m),

'"[mm] '], 'movement');

model.param.set ('xc', [num2str (xc),
'"[mm] '], 'x dimension of crack');
model.param.set ('yc', [num2str (yc),
'"[mm] '], 'y dimension of crack');
model.param.set ('zc', [num2str(zc),
'"[mm] '], 'z dimension of crack');

Then, two similar scripts are developed, one for the
MC studies and one for conducting the simulations
required by the PC expansions. In the former case,
the values of the uniformly-distributed parameters ¢
are obtained via

xi = 2*rand(samples,3)-1;

where samples denotes the selected number of suc-
cessive evaluations (normally, of the order of thou-
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sands). In the case of the PC approach, the & values
correspond to specific integration nodes and are de-
termined via

[nodes, wgts] = nwspgr('KPU', 3, level);
xi1 = 2*nodes-1;

where the nwspgr.m function is taken from [17],
and produces, according to the above formulation, 3D
sparse grids based on delayed KP nodal sets.

6. Numerical Results

We have experimented with various combinations
of random variables, value ranges, etc., and we pre-
sent a fraction of these results. Specifically, the prob-
lem under study considers mean values of the coil’s
X¢, Yer Zo dimensions equal to 0.5 mm, 10 mm, and 5
mm, respectively, with deviations of the order of
+10% around the aforementioned averages. The
changes in the coil’s impedance are calculated for
coil positions in the range 0-20 mm — with respect to
the central point of the defect — along the y-direction.
We initially gather reference simulation results by
employing the MC approach for 2000 samples (each
“sample” actually corresponds to the impedance
changes at all coil positions, with spatial step of 1
mm). This number of samples is expected to produce
quite reliable outcomes, although several thousands
of simulations are usually required, in order to ensure
very accurate results. Then, another (smaller) set of
simulations is performed, according to the selected
level of sparse-grid quadrature, and the PC expan-
sions of the coil’s impedance components are com-
puted as described earlier, providing a complete sta-
tistical description of the examined variables.

First, the mean value and the standard deviation
of the AR and AX components are examined, as a
function of the coil’s position. The comparison be-
tween MC and PC calculations is depicted in Fig. 3.
Regarding the mean-value estimates, excellent
agreement can be observed, even when a low-level
sparse grid with only 19 nodes and just first-order (p
= 1) basis functions are utilized. The reliable compu-
tation of the standard deviation appears to be more
challenging. Nevertheless, the good agreement in Fig.
3 is obtained considering an 87-node grid and se-
cond-order polynomial approximations (p = 2). One
may observe that the maximum mean values appear
when the coil is positioned at approximately 7 mm
from the central point of the geometry. Furthermore,
the shapes of the standard-deviation curves appear to
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Figure 3. Mean value (top) and standard deviation (bot-
tom) of the change in coil’s impedance, as a function of the
coil position.

be quite different for AR and AX, with the pattern of
the coil’s reactance exhibiting the most significant
values in the range 4-11 mm.

Next, the probability density functions (PDFs)
that completely describe the statistics of the coil’s
impedance change at a distance of 7 mm (which cor-
responds to the position of the maximum expected
value, according to Fig. 3) are estimated via the PC
expansions and compared against the MC results.
Note that the PC-based PDFs are computed, after
gathering a large amount of samples (150,000) within
a matter of seconds, by applying a MC technique
directly to the PC series. The latter are determined
using Smolyak grids with accuracy level equal to six.
As expected, Fig. 3 verifies that low-order polynomi-
al approximations, although sufficient for mean-value
estimations, do not capture reliably all the properties
of the corresponding distributions. In the case of AR,
setting p = 3 produces better results than the lower-
order expansions, while setting p = 2 or 3 appear to
provide similar accuracy levels in the case of AX.
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Figure 4. Computed PDFs corresponding to AR (top) and
AX (bottom) at a distance of 7 mm.

Another result that validates the reliability of the
PC methodology pertains to the computation of the
lower and upper bounds of the changes in the coil’s
impedance. These bounds are represented here by the
5™ and the 95™ percentiles, which can be computed
from the corresponding PDFs. Figure 5 displays the
comparison between the reference curves and the PC-
based results, when p = 3 and an accuracy level of six
is selected for the quadrature rule. The depicted out-
comes reveal an almost excellent agreement, which is
to be expected, given the small differences between
the calculated PDFs mentioned earlier. In the case of
AR, the most pronounced distance between the two
bounds is observed at 8§ mm, where the corresponding
values cover the interval 0.3034 — 0.3939 Q, while
the corresponding interval in the case of AX is 0.5524
—0.8018 Q and is observed at 11 mm.

Finally, a sensitivity analysis is performed, to de-
termine the influence of each of the geometric pa-
rameters on the results, without carrying out any ex-
tra simulations. The necessary information is extract-
ed from the Sobol indices, which are directly com-
puted from the available PC coefficients:
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Figure 5. Upper and lower bounds of AR and AX, repre-
sented by the 95" and 5™ percentiles.

(o) I

lek,
S = (18)

where K, stands for the following set of indices:
M
K, = {k efl., P}, @ =] v, (¢, )} (19)
i=1

For the problem under investigation, v may corre-
spond to {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, and
{1,2,3}, hence there exist seven Sobol indices, with
the first three ones denoting first-order contributions.
Figure 6 displays the contribution of each of the three
geometric parameters on the change of the resistance
and reactance, as a function of the coil’s position.
Evidently, the variability of the output is mainly due
to the second geometric parameter (y.), while the
other two dimensions appear to play a less prominent
role. In fact, their contribution becomes more signifi-
cant at positions 6-8 mm, with z. being more influent-
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Figure 6. Calculation of the first-order Sobol indices, re-
garding the real part (top) and the imaginary part (bottom)
of the coil’s impedance change.

ial for the real part of the coil’s impedance, rather
than AX. The depicted results have been computed
assuming third-order polynomial expansions and
Smolyak grid of level six. Note that the sum of the
three Sobol indices at each position is less than 1, as
higher-order contributions have not been included
(the sum of all Sobol indices is unity).

7. Conclusions

By exploiting the potential of PC representations and
sparse-grid quadrature, we have used the determinis-
tic FEM solver of COMSOL® for the investigation
of stochastic eddy-current testing problems. Unlike
MC methodologies, whose slow convergence suggest
long simulation times, our approach provides reliable
statistical information using a fraction of the afore-
mentioned computational requirements. As the nu-
merical results have pointed out clearly, perturbations
of a defect’s geometric properties are likely to have
non-trivial impact on the coil’s impedance, which
constitutes the main criterion for defect detection.
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