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Abstract: This paper investigates the forward prob-
lem of crack detection on conducting objects via ed-
dy-current inspection in a stochastic framework. Un-
like the majority of pertinent works that are suitable 
only for deterministic problems with precisely de-
scribed parameters, we follow a line of work that 
takes into account potential uncertainties characteriz-
ing the geometric properties of the defects, which 
eventually influence the corresponding outcomes. As 
the implementation of standard techniques, such as 
the Monte-Carlo approach, require elongated simula-
tion times (even of the order of days for 3D geome-
tries), the suggested methodology alternatively de-
rives polynomial-chaos expansions of the random 
quantities of interest by exploiting efficient sparse-
grid quadrature rules, thus enabling significant reduc-
tion of the involved computational cost. The numeri-
cal results verify that, in this way, COMSOL® capa-
bilities can be further expanded to provide reliable 
statistical characterization of eddy-current inspection 
problems with variability in their parameters.  
 
Keywords: AC/DC module, crack detection, eddy-
current testing, polynomial chaos, sparse grids, un-
certainty quantification. 
 
1. Introduction 

Detection of defects, such as cracks, in metallic 
configurations via eddy-current inspection comprises 
an active research area of non-destructive evaluations 
with increasing interest [1, 2]. In essence, the pres-
ence of a crack can be identified by observing the 
perturbation of a coil’s impedance, with respect to the 
case of the “flawless” structure, when the position of 
the coil changes in the vicinity of the crack. Due to 
the importance – from an engineering viewpoint – of 
the aforementioned problems, various approaches 
have been developed for the solution of the forward 
problem. The combination of the finite element 

method (FEM) and the boundary element method 
(BEM) is proposed for eddy-current problems in [3], 
adopting a formulation that depends on the magnetic 
vector potential A and the scalar potential φ. A 
boundary element approach is presented in [4] for 
handling ideal plane cracks (i.e. defects with negligi-
ble opening). The work of [5] considers the vector-
potential boundary-integral approach for studying 
eddy-current interactions with cracks, and explores 
cases where the skin depth is small, compared to the 
characteristic size of the defects. In [6], the source 
terms for an integral equation to be solved around the 
crack is obtained by imposing the current density to 
be the opposite of the unperturbed one, so that a van-
ishing total current inside the crack region is ensured. 
A FEM that considers changes in the crack shape is 
derived in [7], while various developments of the 
BEM that enable the significant reduction of the 
computational time are presented in [8], in the case of 
narrow cracks. The work of [9] pertains to a revision 
of an existing boundary element model for ideal or 
narrow cracks, and [10] applies edge elements using 
COMSOL®, in the context of benchmark problems. 
Finally, the A-formulation for the eddy-current prob-
lem is thoroughly studied in [11], neglecting the 
crack thickness and applying the FEM. 

The aforementioned methodologies assume that 
the parameters of the investigated problem, either 
geometric or electric, are known in an exact fashion. 
If, from a more realistic viewpoint, one or more key 
factors display a degree of randomness, then the 
quantities of interest (e.g. the change of the coil’s 
impedance) become stochastic, and their reliable 
characterization requires more sophisticated treat-
ment. Monte-Carlo (MC) methodologies provide a 
standard line of work that enables the extraction of 
the statistical properties of random quantities, as long 
as a significant amount of output samples is available 
[12]. The latter is necessary due to the slow conver-
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more, two simulations are conducted for each place-
ment and the coil’s impedance with and without the 
presence of the defect is calculated. The impedance is 
derived via the integral 

 
2

j
cV

Z dV
I


  A J   (3) 

which is computed by COMSOL® (Vc stands for the 
volume occupied by the coil). 
  
3. Polynomial-Chaos Models 

In a completely deterministic context, the imped-
ance change ΔZ = ΔR + jΔX is normally a function of 
the coil position r. If the problem is stochastic, then 
ΔZ becomes dependent on a number of d random 
variables (which are considered independent herein), 
represented by the vector ξ = [ξ1 ξ2 … ξd]

T. To facili-
tate the computation of the quantities of interest, 
truncated polynomial series are used for the represen-
tation of the change in the resistance and reactance 
ΔU, U œ {R, X}: 

 
0

( , ) ( ) ( )
P

UU C


 r ξ r ξ 


  (4) 

In (4), ( )UC r  are expansion coefficients that depend 
on the coil position only, ( ) ξ  are multivariate pol-
ynomial functions, and P + 1 is the number of the 
expansion terms, determined by 

 
( )!

1
! !

p d
P

p d


    (5) 

where p is the selected polynomial order of the series 
approximation. The Ψ functions are constructed as 
products of univariate expressions, 

 
1 2

1 2( ) ( ) ( ) ( )
d

d  
         ξ       (6) 

where 

 1 2          d pα   (7) 

Furthermore, the ( ) ξ  functions form an orthogo-
nal basis, with respect to the inner product 

 ( ), ( ) ( ) ( ) ( )
d

f g f g p d


 ξ ξ ξ ξ ξ ξ   (8) 

where Ωd is the random space that the ξ variables 
span, and p(ξ) = p1(ξ1)ÿ p2(ξ2) ÿ…ÿ pd(ξd) is the joint 
probability density function. Consequently, we have 

 
2

( ), ( ) ( )i j i ij   ξ ξ ξ    (9) 

where 
2

( ) ( ), ( )i i i   ξ ξ ξ  and δij is the Kron-
ecker delta.  

In this paper, we are mainly concerned with un-
certainties pertinent to the geometric properties of the 
investigated crack. In essence, the ξ variables are 
considered to be uniformly distributed with ξi œ [-1, 
1], i = 1, …, d (hence, Ωd = [-1, 1]d and p(ξ) = 0.5d), 
which are mapped to the original – geometric – vari-
ables via linear functions. For instance, if L is a geo-
metric dimension of the crack within the range [Lmin, 
Lmax] and associated with the ξm variable, then the 
following formula is used: 

   max min max min

2 2m m

L L L L
L  

 
     (10) 

Note that, due to the uniformly distributed random 
variables, the optimal choice for the basis functions is 
to use Legendre polynomials for their construction 
[13]. 
 
4. Calculation of Expansion Coefficients and 
Extraction of Statistics 

The ( )UC r  coefficients involved in the PC ex-
pansions can be calculated in a non-intrusive fashion 
(i.e. without modifying the deterministic solver), 
through projection on every basis function, via  

 2
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( )

kU
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k
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Evidently, the above formula requires the implemen-
tation of a quadrature rule for the computation of the 
numerators (the denumerators can be obtained analyt-
ically). The numerical computation of integrals is a 
subject of general interest, and several techniques 
have been developed till today. Normally, a quadra-
ture rule is applied in the form 
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ξ r ξ ξ ξ
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(12) 

where ξ(i) denotes a pre-determined set of nodes on 
Ωd and w(ξ(i)) is the corresponding set of weights. In 
this paper, we consider integration rules that are 
based on the Kronrod-Patterson (KP) nodal sets. For 
multi-dimensional problems, sparse grids based on 
the Smolyak algorithm [14] constitute more attractive 
choices than full – tensor based – grids, as they are 
capable of providing accurate predictions with re-
duced sets of nodes and, therefore, result in smaller 
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computational times (recall that each node in the ran-
dom space corresponds to a full-wave simulation). In 
particular, we perform calculations based on delayed 
KP nodes [16], which means that the quadrature 
nodes are repeated for certain construction levels of 
the grid, controlling the growth of the grid size.  

More specifically, when performing integration 
on sparse grids, one needs to evaluate the integrated 
quantity on the nodes determined by 

  1 2
1 1 1

1

dii i

k k d   

     
i

   (13) 

where the parameter  k denotes the level of construc-
tion of the Smolyak grid, and 1 1 2{ , , , }

i

i i i i
m      

denotes the set of mi nodes of the 1D quadrature rule. 
Some representative examples of 2D sparse grids are 
shown in Fig. 2, and compared against a full grid. 
The corresponding quadrature rule is then described 
by 

 1 2
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  (14)  

where Ui denotes the i-th level 1D quadrature rule. 
Evidently, (14) considers specific combinations of 
product formulae, in contrast to the tensor product 

 

1 2
full

dii iI U U U 
 

 (15) 

which involves 
1 2 di i im m m  nodes. 

After performing the necessary projections, fun-
damental statistical properties of the impedance 
change, as described by the expected value and the 
variance, are deduced from the PC coefficients: 

   0E UU C   (16) 
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It is stressed that the PC expansions constitute a 
complete representation of the corresponding random 
quantities, providing more information than just (16), 
(17), as will be verified by the numerical results. 
 
5. Matlab Scripting 

To facilitate consecutive impedance evaluations, 
which are necessary both for MC and PC approaches, 
the COMSOL® model of the investigated problem is 
exported as a Matlab function, whose input variables 
are the coil’s position and the geometric dimensions 
of the plate’s defect. For this reason, the function’s 

 

Figure 2. Comparison of various two-dimensional sparse 
grids with a full grid. 
 
first line is formulated as 

function out = coil_defect(m,xc,yc,zc) 

and the corresponding directives for the inputs are 
modified, as following: 

model.param.set('m',[num2str(m), 
'[mm]'], 'movement'); 
model.param.set('xc',[num2str(xc), 
'[mm]'], 'x dimension of crack'); 
model.param.set('yc',[num2str(yc), 
'[mm]'], 'y dimension of crack'); 
model.param.set('zc',[num2str(zc), 
'[mm]'], 'z dimension of crack'); 

Then, two similar scripts are developed, one for the 
MC studies and one for conducting the simulations 
required by the PC expansions. In the former case, 
the values of the uniformly-distributed parameters ξ 
are obtained via 

xi = 2*rand(samples,3)-1; 

where samples denotes the selected number of suc-
cessive evaluations (normally, of the order of thou-
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sands). In the case of the PC approach, the ξ values 
correspond to specific integration nodes and are de-
termined via 

[nodes, wgts] = nwspgr('KPU',3,level); 
xi = 2*nodes-1; 

where the nwspgr.m function is taken from [17], 
and produces, according to the above formulation, 3D 
sparse grids based on delayed KP nodal sets.  
      
6. Numerical Results 

We have experimented with various combinations 
of random variables, value ranges, etc., and we pre-
sent a fraction of these results. Specifically, the prob-
lem under study considers mean values of the coil’s 
xc, yc, zc dimensions equal to 0.5 mm, 10 mm, and 5 
mm, respectively, with deviations of the order of 
±10% around the aforementioned averages. The 
changes in the coil’s impedance are calculated for 
coil positions in the range 0-20 mm – with respect to 
the central point of the defect – along the y-direction. 
We initially gather reference simulation results by 
employing the MC approach for 2000 samples (each 
“sample” actually corresponds to the impedance 
changes at all coil positions, with spatial step of 1 
mm). This number of samples is expected to produce 
quite reliable outcomes, although several thousands 
of simulations are usually required, in order to ensure 
very accurate results. Then, another (smaller) set of 
simulations is performed, according to the selected 
level of sparse-grid quadrature, and the PC expan-
sions of the coil’s impedance components are com-
puted as described earlier, providing a complete sta-
tistical description of the examined variables.  

First, the mean value and the standard deviation 
of the ΔR and ΔX components are examined, as a 
function of the coil’s position. The comparison be-
tween MC and PC calculations is depicted in Fig. 3. 
Regarding the mean-value estimates, excellent 
agreement can be observed, even when a low-level 
sparse grid with only 19 nodes and just first-order (p 
= 1) basis functions are utilized. The reliable compu-
tation of the standard deviation appears to be more 
challenging. Nevertheless, the good agreement in Fig. 
3 is obtained considering an 87-node grid and se-
cond-order polynomial approximations (p = 2). One 
may observe that the maximum mean values appear 
when the coil is positioned at approximately 7 mm 
from the central point of the geometry. Furthermore, 
the shapes of the standard-deviation curves appear to 

 

 

Figure 3. Mean value (top) and standard deviation (bot-
tom) of the change in coil’s impedance, as a function of the 
coil position. 
 
be quite different for ΔR and ΔX, with the pattern of 
the coil’s reactance exhibiting the most significant 
values in the range 4-11 mm.  

Next, the probability density functions (PDFs) 
that completely describe the statistics of the coil’s 
impedance change at a distance of 7 mm (which cor-
responds to the position of the maximum expected 
value, according to Fig. 3) are estimated via the PC 
expansions and compared against the MC results. 
Note that the PC-based PDFs are computed, after 
gathering a large amount of samples (150,000) within 
a matter of seconds, by applying a MC technique 
directly to the PC series. The latter are determined 
using Smolyak grids with accuracy level equal to six. 
As expected, Fig. 3 verifies that low-order polynomi-
al approximations, although sufficient for mean-value 
estimations, do not capture reliably all the properties 
of the corresponding distributions. In the case of ΔR, 
setting p = 3 produces better results than the lower-
order expansions, while setting p = 2 or 3 appear to 
provide similar accuracy levels in the case of ΔX. 
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Figure 4. Computed PDFs corresponding to ΔR (top) and 
ΔX (bottom) at a distance of 7 mm. 
 

Another result that validates the reliability of the 
PC methodology pertains to the computation of the 
lower and upper bounds of the changes in the coil’s 
impedance. These bounds are represented here by the 
5th and the 95th percentiles, which can be computed 
from the corresponding PDFs. Figure 5 displays the 
comparison between the reference curves and the PC-
based results, when p = 3 and an accuracy level of six 
is selected for the quadrature rule. The depicted out-
comes reveal an almost excellent agreement, which is 
to be expected, given the small differences between 
the calculated PDFs mentioned earlier. In the case of 
ΔR, the most pronounced distance between the two 
bounds is observed at 8 mm, where the corresponding 
values cover the interval 0.3034 – 0.3939 Ω, while 
the corresponding interval in the case of ΔX is 0.5524 
– 0.8018 Ω and is observed at 11 mm.   

Finally, a sensitivity analysis is performed, to de-
termine the influence of each of the geometric pa-
rameters on the results, without carrying out any ex-
tra simulations. The necessary information is extract-
ed from the Sobol indices, which are directly com-
puted from the available PC coefficients: 

 

 

Figure 5. Upper and lower bounds of ΔR and ΔX, repre-
sented by the 95th and 5th percentiles. 
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where Kv stands for the following set of indices: 

  
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For the problem under investigation, v may corre-
spond to {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, and 
{1,2,3}, hence there exist seven Sobol indices, with 
the first three ones denoting first-order contributions. 
Figure 6 displays the contribution of each of the three 
geometric parameters on the change of the resistance 
and reactance, as a function of the coil’s position. 
Evidently, the variability of the output is mainly due 
to the second geometric parameter (yc), while the 
other two dimensions appear to play a less prominent 
role. In fact, their contribution becomes more signifi-
cant at positions 6-8 mm, with zc being more influent- 
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Figure 6. Calculation of the first-order Sobol indices, re-
garding the real part (top) and the imaginary part (bottom) 
of the coil’s impedance change. 
 
ial for the real part of the coil’s impedance, rather 
than ΔX. The depicted results have been computed 
assuming third-order polynomial expansions and 
Smolyak grid of level six. Note that the sum of the 
three Sobol indices at each position is less than 1, as 
higher-order contributions have not been included 
(the sum of all Sobol indices is unity).   
 
7. Conclusions 

By exploiting the potential of PC representations and 
sparse-grid quadrature, we have used the determinis-
tic FEM solver of COMSOL® for the investigation 
of stochastic eddy-current testing problems. Unlike 
MC methodologies, whose slow convergence suggest 
long simulation times, our approach provides reliable 
statistical information using a fraction of the afore-
mentioned computational requirements. As the nu-
merical results have pointed out clearly, perturbations 
of a defect’s geometric properties are likely to have 
non-trivial impact on the coil’s impedance, which 
constitutes the main criterion for defect detection.   
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