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 We are interested in studying the problem of eddy-current 
inspection of cracks, when geometric uncertainties are present. 

 Till today, problems involving eddy currents are rarely solved 
computationally in a stochastic framework.

 FEM modeling via the COMSOL® software is exploited, combined 
with Matlab scripting. 

 Monte-Carlo (MC) methodologies are computationally inefficient, 
due to slow convergence.
Uncertainty quantification is performed here in a non-intrusive
fashion, by computing polynomial-chaos (PC) expansions of the 

random output quantities in an efficient manner that adopts sparse-
grid quadrature schemes. 
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p-th order PC series of ΔR, ΔX for d random variables

Expansion coefficients, depending 
on coil position only.

2

( , ), ( )
, 0, ,

(
( )

)
k

k

U
k

U
k PC

 
 



r ξ ξ
ξ

r 

Spectral projection

       ( ) ( ) ( ) ( )

1

( , ), ( )

,

k

N
i i i i

k
i

U

w U p


 

 

r ξ ξ

ξ r ξ ξ ξ


Quadrature

Sparse-grid (Smolyak) approach
Figure 5. Calculation of the first-order Sobol indices, 
regarding the real part (top) and the imaginary part 

(bottom) of the coil’s impedance change.

Introduction

Problem Description

Reliable statistical information is extracted with a 
reduced number of simulations.

Polynomial Chaos Models

 The deterministic FEM solver of COMSOL® has been used for the 
investigation of stochastic eddy-current testing problems.  

 The PC approach provides reliable statistical information using a 
fraction of MC’s computational requirements.

 Uncertainty in the length of the defect appears to have the most 
significant impact on the impedance variability. 

 A ±10% uncertainty in the three geometric parameters may 
induce a deviation in the range 8-22% in ΔR and in 5-25% in ΔX.

Calculation of Expansion Coefficients

Conclusion

References

Sensitivity Analysis
Direct calculation of Sobol indices 
from the PC coefficients.

The significant influence of 
the crack’s length on the 

output variability is revealed
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Numerical Results
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Figure 4. Upper and lower bounds of ΔR and ΔX, represented by the 95th and 5th percentiles.

Figure 3. Computed PDFs corresponding to ΔR (left) and ΔX (right) at a distance of 7 mm.

Figure 2. Mean value (left) and standard deviation (right) of the change in coil’s impedance, as a 
function of the coil position. 

Coil-impedanceCurrent-source density

Figure 1. Problem setup. 
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Orthogonality property, with respect 
to 

grid construction quadrature rule

Delayed Kronrod-
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selected  tensor-product grids
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Direct calculation of 
standard statistical norms 

from the expansion 
coefficients

Matlab directives
function out = coil_defect(m,xc,yc,zc)

...

model.param.set('m',[num2str(m), 
'[mm]'], 'movement');
model.param.set('xc',[num2str(xc), 
'[mm]'], 'x dimension of crack');
model.param.set('yc',[num2str(yc), 
'[mm]'], 'y dimension of crack');
model.param.set('zc',[num2str(zc), 
'[mm]'], 'z dimension of crack');

Computational cost
2000 MC samples 

require 
approximately 6.3 

days on an i7-4820K 
CPU @ 3.7 GHz!

19 nodes, p = 1 87 nodes, p = 2

135 nodes 135 nodes

AC-DC module
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