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Abstract:  
 
This paper is focused on topology optimization 
of heat transfer and fluid flow systems for 
multiphysics objectives. Specifically, COMSOL 
Multiphysics software is coupled with a method 
of moving asymptotes optimizer in a custom 
COMSOL / MATLAB script. Various physical 
process including conduction, convection-
diffusion, and Navier-Stokes flow are 
considered. To illustrate the method, a standard 
pure heat conduction problem is first presented 
in two dimensions followed by an extension of 
the problem to three dimensions. More complex 
physics are then examined in the optimization 
process for a three-terminal heat transfer and 
fluid flow device. General applications and 
limitations of the methodology are discussed. 
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1. Introduction 
 
Advanced electrical machine design requires 
simulation and optimization of systems for 
multiple physical processes. Within this active 
engineering field several types of multiphysics 
problems may be defined including those related 
to heat transfer and fluid flow. While 
determining the ‘optimal’ structure for a 
standalone physical process may be 
straightforward, defining structures for 
objectives involving many physics is more 
challenging. Accordingly, the engineering 
community is continuously examining the 
feasibility of various optimization techniques for 
such tasks. 
 
One potential technique is structural topology 
optimization, which is a broad research area with 
a variety of interesting applications [1]. 
Basically, topology optimization consists of an 

iterative loop in which finite element analysis, 
sensitivity analysis, and optimization steps (to 
update design variables) are performed [2]. In 
this study COMSOL software is used in 
conjunction with a method of moving 
asymptotes (MMA) optimizer [3] to streamline 
this process. A similar set of computational tools 
has been successfully applied by previous 
researchers to the optimization of various single 
physics problems [4,5]. A primary advantage of 
the approach is that the designer may exploit 
COMSOL for the finite element and sensitivity 
analysis portions of the problem in a custom 
scripting environment. Additionally, the designer 
may make efficient use of their time both for 
model generation and post processing of results.  
 
This paper is focused on the use of COMSOL 
Multiphysics with a MMA optimizer in a custom 
MATLAB script for topology optimization of 
heat transfer and fluid flow problems. The 
optimization process is briefly reviewed in 
Section 2. A description of a two-dimensional 
(2-D) single physics pure heat conduction 
benchmark problem is presented in Section 3 
along with a similar problem in three-dimensions 
(3-D). These problems were examined to 
validate the optimization process in the 
COMSOL environment, and optimal topologies 
are provided in Section 4. A 2-D thermal / fluid 
multiphysics optimization problem is then 
described in Section 5 followed by results in 
Section 6. Discussion and conclusions are given, 
respectively, in Sections 7 and 8. 
 
2. Topology Optimization – Brief Review 
 
The material distribution method is a common 
approach to topology optimization. A concise 
explanation of the process is given here. The 
reader is referred to the literature for an in-depth 
discussion of the topic [1,2]. 
 
To optimize the topology of a structure it is first 
typically discretized into many finite elements as 
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part of a computational analysis. The material 
distribution method is then used to find the 
optimal topology of the structure for a given 
objective and constraints by assigning each 
element an individual density value. These 
density values may be associated with a material 
physical parameter such as the isotropic thermal 
conductivity and are interpolated from 0 (no 
material) to 1 (solid material) using various 
‘penalization’ schemes that influence material 
distribution. The final element density values are 
found through an iterative loop that involves 
repeated evaluation of an objective function and 
gradients [1]. 
 
The implementation of the above process in 
COMSOL Multiphysics varies slightly as 
described in [4,5]. Nonetheless, the general 
process is still applicable to the solution of a 
standard nonlinear optimization problem [3], 
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where f0 is the objective function, fi are behavior 
constraints, m is the number of constraints, and x 
is a vector of n design variables, xj.  
 
For a single physics problem (e.g. pure 
conduction), the objective function may be as 
straightforward as minimizing the mean 
temperature of the design domain subject to a 
given volume constraint, where the material 
thermal conductivity is interpolated from zero to 
a predetermined maximum value. For a 
multiphysics problem, the objective function 
may consist of separate parts related to different 
physical processes (e.g. heat transfer plus fluid 
flow).  
 
3. Single Physics – Heat Conduction 
 
A single physics heat conduction optimization 
study was performed for validation of the 
COMSOL / MMA optimization process. The 
governing equations and the optimization 
objective function for this study are provided in 
Section 3.1. Descriptions of the model 
geometries, boundary conditions, and loads are 
given in Section 3.2. The COMSOL Heat 

Transfer Module was used within the MATLAB 
environment to generate and evaluate all models. 
 
3.1 Governing Equations 
 
For steady state pure conduction Fourier’s law 
governs heat transfer,  
 

( ) QTk =∇⋅∇− ,                                               (2) 
 
where k is the thermal conductivity of the solid 
material, T is the temperature state variable, and 
Q is the volumetric heat generation. 
 
The general objective function, A1, chosen for 
this single physics benchmark problem is 
equivalent to minimizing the mean temperature 
of the design domain, Ω, subject to constant heat 
generation,  
 

( ) Ω∇= ∫
Ω

d2
1 TkA .                                        (3) 

 

The objective function, Eq. (3), may be 
expressed in three dimensions as a global 
expression within a custom script: 
‘fem.globalexpr = {'A','(.001+0.999 
*rho^penal)*k*(Tx*Tx+Ty*Ty+Tz*Tz)’
}’. In this expression ‘rho’ is the density design 
variable, ‘penal’ is the penalization power for 
interpolation, ‘k’ is the material isotropic 
thermal conductivity which varies between zero 
and unity, and ‘Tx,’ ‘Ty,’ and ‘Tz’ are the 
partial derivatives xT ∂∂ / , yT ∂∂ / , and zT ∂∂ / , 
respectively. 
 
3.2 Computational Model Descriptions 
 
Determining the optimal material distribution for 
a square 2-D design domain subject to pure 
conduction, Figure 1, is a standard optimization 
problem available in the literature [1]. 
 
The temperature at the center of the left edge of 
the domain in Figure 1 was set to zero to 
represent a heat sink. The remaining edges of the 
domain were considered adiabatic (i.e. zero heat 
transfer). Constant uniform heat generation was 
assumed throughout the domain which was 
meshed using approximately 10,000 
quadrilateral elements. 
 



 
Figure 1: 2-D topology optimization design domain 
and boundary conditions for pure heat conduction.  
 

 
Figure 2: 3-D topology optimization design domain 
and boundary conditions for pure heat conduction. 
 

 
 
Figure 3: Optimal topology (shown by dark regions) 
and temperature distribution for 2-D design domain. 
 
The extension of this problem to 3-D is relatively 
straightforward with the help of the COMSOL 
Multiphysics graphical user interface. In Figure 2 
the 3-D design domain is shown partitioned into 
separate regions to facilitate boundary condition 
assignment. The highlighted lower boundary in 
Figure 2 represents the heat sink region. All 
other boundaries are again adiabatic, and the 
domain is subject to a uniform heat source. The 
3-D design domain was meshed using 
approximately 8,000 hexahedral elements. 

A maximum solid volume fraction of 0.4 was 
used in the optimization process for both 2-D 
and 3-D models. 
 
4. Single Physics – Optimization Results 
 
The optimal topology and temperature field for 
the 2-D model are shown in Figure 3. These 
results are consistent with those found in the 
literature [1]. For the 3-D model, a self-similar 
‘branching,’ or dendritic structure is also 
obtained; see Figure 4. The 3-D optimal 
topology was reconstructed in MATLAB using 
the Image Processing Toolbox while temperature 
slices through the design domain were obtained 
using standard COMSOL post-processing. 
Interestingly, the evolution of the vascular 
structures in Figures 3 and 4 appears to follow 
constructal law, which allows heat to flow via 
the easiest path from source to sink [6]. 
 

 
 
Figure 4: Optimal topology and temperature 
distribution slices of 3-D design domain. 
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5. Multiphysics – Fluid Flow plus Heat 
Transfer 
 
In Section 5.1 the governing equations and 
objective function are provided for a general 
thermal / fluid problem. A three-terminal 2-D 
model is defined in Section 5.2. The General 
PDE mode was used to generate and evaluate the 
model. 
 
5.1 Governing Equations 
 
Following [4,7], governing equations for steady 
state flow in an idealized porous medium are, 
 

0=⋅∇ u ,            (4) 
 
( ) ( )[ ]{ } uuuuu αηρ −∇+∇⋅∇+−∇=∇⋅ TP .   (5) 

 
Eq. (4) represents the fluid incompressibility 
constraint, and Eq. (5) describes Navier-Stokes 
fluid flow. In these expressions ρ and η are the 
fluid density and dynamic viscosity, 
respectively. The inverse permeability of the 
porous medium, α, is assumed to be 
approximately valid for an actual porous 
medium, per [4]. The state variables include the 
fluid pressure, P, and velocity field terms in the 
vector, u. 
 
Additionally, the governing equation for steady 
state convection-diffusion heat transfer is, 
 

( ) ( ) QTkTC +∇⋅∇=∇⋅uρ ,       (6) 
 
where C represents the heat capacity and k is the 
thermal conductivity of the fluid.  
 
A dual objective function, A2, was implemented 
to optimize for both heat transfer and fluid flow. 
Specifically, the objective was specified to 
minimize the mean temperature and total fluid 
power dissipated in the system, 
 

CwBwA 212 +=   , where        (7) 
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Eq. (7) is implemented as a global expression as 
previously described in Section 3.1. In this 
expression B is proportional to the mean 
temperature of the design domain for constant 
heat generation, Q, while C is related to the total 
flow power dissipated in the fluidic system [4].  
 
The terms w1 and w2 in Eq. (7) are weighting 
values that scale the respective thermal and fluid 
portions of the objective function. ‘Tuning’ these 
values was found to assist in convergence and 
modifies the resulting optimal topology by 
affecting the dominance of one physical process 
relative to another. For simplicity, these 
weighting values were selected manually. 
  
To determine the optimal steady state fluid flow 
and channel layout the thermal conductivity and 
inverse permeability of the porous medium were, 
respectively, interpolated using the penalty 
method from [1] and the convex interpolation 
scheme from [4]. These effective properties (i.e. 
k and α) were interpolated via a main design 
parameter, γ, which varied from 0 (minimally-
porous, non-conductive solid) to 1 (conductive 
fluid). 
 
5.2 Computational Model Description 
 
To illustrate the multiphysics optimization 
process a 2-D three-terminal structure, separated 
into four subdomains, was considered; see 
Figure 5. A domain roughly square in size and 
having a height a little larger than its width was 
selected to provide slightly greater distance 
between the two fluid outlet terminals. The 
design domain was meshed with approximately 
6,200 quadrilateral elements. 
 
Fixed temperature, parabolic normal fluid flow 
was assumed at the single device inlet. 
Convective flux, zero pressure normal flow was 
assumed at both outlets. No-slip adiabatic 
boundary conditions were enforced on all 
external walls of the device. Uniform heat 
generation, Q, and the main design parameter, γ, 
were specified only on the primary design 
domain. 



 
Figure 5: 2-D topology optimization design domain 
and boundary conditions for fluid flow and heat 
transfer. 
 

 
Figure 6: Optimal topology, temperature contours, 
and fluid flow vectors for three-terminal device (color 
contour bar refers to temperature contours; grayscale 
bar refers to solid – 0 / fluid – 1 material distribution). 
 

 
Figure 7: Fluid flow velocity contours for optimal 
heat transfer and fluid flow. 

 
Figure 8: Pressure contours for optimal heat transfer 
and fluid flow. 
 
The inlet fluid Reynolds number was set 
arbitrarily to Re ≈ 50. A minimum Darcy number 
of 10-4 was selected to represent a relatively 
impermeable solid [4]. Fluid density, heat 
capacity, and dynamic viscosity were all set to 
unity. The solid volume fraction constraint was 
set 0.6 for designs exhibiting a lesser amount of 
solid material. 
 
6. Multiphysics – Optimization Results  
 
Figure 6 shows the channel topology, 
temperature contours, and fluid flow vectors 
obtained for the three-terminal device optimized 
for minimum average temperature and power 
dissipation. Observe that the solid (darker) 
regions have increased temperature relative to 
the free fluid flow (lighter) areas with hot spots 
occurring in the domain corners. This thermal 
behavior is expected for minimally porous, non-
conductive solid material versus conductive 
fluid, respectively. 
 
The optimal fluid flow velocity and pressure 
contours are also shown for reference in Figures 
7 and 8, respectively. In Figure 7 regions of less 
porous semi-solid material are shown in dark 
blue versus fluid flow channels in lighter colors; 
refer to the contour bar shown in the figure. This 
optimal fluid flow topology is an artifact of the 
multiple objectives in Eq. (7). Specifically, there 
is a tradeoff between a fluid distribution that 
minimizes the average temperature of the 
domain, Figure 7, and flow resistance (i.e. 
pressure drop), Figure 8.  
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Figure 9: Optimal ‘Y-branch’ topology with pressure 
contours and fluid flow vectors for minimum flow 
power dissipation only (i.e. obtained with w1 = 0 and 
w1 = 1 in Eq. (7)). 
 
Note that setting w1 = 0 and w2 = 1 in Eq. (7) 
leads to a simple ‘Y-branch’ topology and a 
reduced pressure drop, Figure 9, for minimum 
fluid power dissipation. Thus, the relatively large 
pressure drop observed in Figure 8 is an artifact 
of a larger weighting given to the thermal portion 
of the objective function, B, in Eq. (7). Thus, the 
topology in Figure 6, obtained for dual heat 
transfer and fluid flow objectives, is a logical 
superposition of the dendritic structural 
characteristics seen in Figure 3 and the 
straightforward ‘Y-branch’ structure in Figure 9. 
The conclusion is that the relative values of w1 
and w2 in Eq. (7) have an important effect in 
‘tuning’ the final result obtained through the 
optimization process. 
 
 
7. Discussion 
 
The multiphysics optimization process described 
in this paper may be applied to a variety of heat 
transfer and fluid flow problems. Additional 
physics including, for example, both static and 
dynamic structural loading may be incorporated 
into the general process. Moreover, the 
advantage of using an MMA optimizer is that it 
has been shown to be effective in handling 
optimization problems with multiple constraints.  
 
The primary limitation in applying this method 
to a broader range of three dimensional problems 
continues to be the computational time required 

for each iterative optimization step, which 
involves both a multiphysics finite element 
simulation plus sensitivity analysis. Additionally, 
the synthesis of the final optimization result into 
an actual physical structure is typically 
challenging. Nonetheless, as computing 
resources continue to improve, the use of similar 
methods for 3-D structural design will likely 
have a significant impact on the research and 
development process for advanced electrical 
machines and assist in reducing design cycle 
time. 
 
8. Conclusions 
 
The application of gradient based topology 
optimization within COMSOL Multiphysics via 
a MMA optimizer was presented. An initial 
single physics pure heat conduction problem was 
selected to evaluate a custom MATLAB script. 
Self-similar branching structures were obtained 
for this benchmark problem both in 2-D and 3-D. 
The method was then extended to multiple 
physical processes including convection-
diffusion and Navier-Stokes flow with 
corresponding objectives. The approach was then 
applied to optimize a 2-D three-terminal device 
having characteristics attributable to the various 
physics involved. 
  
Despite additional computational time needed for 
larger 3-D structures, this approach provides 
interesting starting points for synthesizing 
effective thermal / fluid structures. Future 
research should focus on automating the 
weighting strategy for multiple objectives to 
better interrogate a prospective design space. The 
application of this computational method to the 
design of various vehicle systems is also a 
logical focus for future work. 
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