Flow and Mixing in the Liquid between Bubbles

Bruce A. Finlayson
Professor Emeritus, University of Washington
Seattle, WA 98195-1750
finlayso@u.washington.edu

G. I. Taylor, J. Fluid Mech. 10, 161 (1961)

$$m = \frac{U_b - U}{U_b}, \quad m = 1.0(\eta U / \sigma)^{1/2} = 1.0 Ca^{1/2}$$

 $U = \text{velocity of liquid}, \quad U_b = \text{velocity of bubble}$

F. P. Bretherton, J. Fluid Mech. 10, 161 (1961)

$$m = 1.29(3Ca)^{2/3}$$

Gunther, Khan, Thalmann, Trachsel, Klavs F. Jensen, Lab Chip, 4, 278 (2004)

http://www.rsc.org/suppdata/lc/b4/b403982c/

Goal: quantify the mixing that occurs between the bubbles

- Case 1 thin layer at bottom
- Case 2 half and half

Flow – key assumption: assume a reasonable bubble shape, but don't solve for it; flow is steady

- Solve in a coordinate system moving with the bubble (velocity U_b)
- Non-dimensional equations

 $Re \mathbf{u} \bullet \nabla \mathbf{u} = -\nabla p + \nabla^2 \mathbf{u}, Re = 1$ $\mathbf{u} = -1$ on solid boundary zero stress on gas - liquid interface (perfect slip) velocity specified at inlet to match these conditions and have a specified flow rate

Unsteady Convection and Diffusion

- Concentration = 0 at one inlet, = 1 at other
- Zero flux on all bubble surfaces and wall
- Convective flux out
- Initial concentration for Case 1 and Case 2

$$\frac{\partial c}{\partial t} + \mathbf{u} \bullet \nabla c = \frac{1}{Pe} \nabla^2 c$$

$$cavg = \int_{V} cdV/V$$

$$variance = \int (c - cavg)^{2} dV/V$$

Concentration Development

Case 1 – B – base case

Effect of distance between bubbles

Variances

L = 6: 0.0049/.028

L = 3: 0.014/.048

L = 1.5: 0.055/.094

 For bubbles closer together, the variance is higher but it doesn't take as long to reach steady state

Effect of elongated bubbles

 Little effect on the approach to steady state but the variance increases as the length of the bubble increases

Bubble Length -

Left Variance/Right Variance

1 - .0049/.028

2 - .0073/.032

4 - .012/.039

6 - .043/.071

Effect of bubble shape

Variance = 0.014/0.048

Variance = 0.011/0.041

Shape makes little difference.

Effect of Peclet number

Peclet No. - Variance

1000 - .014/.048

2000 - .024/.058

4000 - .034/.063

10000 - .041/.063

 As the Peclet number increases, it takes longer to reach steady state and the steady variance is larger

Effect of leakage rate

Leakage Rate/Variance

-.13 - .046/.077

-.07 - .014/.048

-.03 - .0026/.021

-.01 - 4e-4/.01

 As the leakage rate increases, the time to steady state decreases, and the variance increases

Effect of gap thickness

- The smallest variances are for smaller gaps and smaller leakage rates
- A leakage rate of -0.01 is an average of what is predicted by Taylor (-0.012) and Bretherton (-0.0072) for a Capillary number of 0.00014 (air/water)

Leakage rate = -0.0667

Leakage rate = -0.01

Gap thickness/Variance

Gap thickness/Variance

0.05 - .014/.048

0.05 - .0044/.027

0.03 - 4e - 4/.01

0.03 - 3e-4/.0043

Results for Case 2; comparison with T-sensor

3D results

Cavg and variance in 3D

600

Effect of longer bubble in 3D – same as in 2D – less mixing

Variance –

0.002

0.019

Effect of bubble not centered

Conclusions

- The variance always approaches an asymptotic value.
- While the geometry is assumed, the qualitative results are independent of the geometry.
- Better mixing is achieved by:
 - Bubbles further apart
 - Spherical bubbles, not elongated ones
 - Low leakage rates
 - Small gap thicknesses