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Titanium and Its Alloys




Hydrogen-Induced Cracking (HIC)

¢ Potentially susceptible to HIC as a consequence of H absorption
s+ Absorbed hydrogen results in hydride formation and fast crack

growth leading to the cracking of Ti and its alloys.
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Influence of Oxide Films

“* Tiis generally covered by a thin passive oxide (TiO,) film.

“* The impermeability of this film is the limiting feature preventing
HIC in Ti-alloys.

% The mechanism by which TiO, influences H permeation is
complicated and still not well established.
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Critical Questions
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¢ Can hydrogen permeate
the oxide film?
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» How much the hydrogen

L)

H+
entering the oxide can
reach the underlying

H metal?
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» How long does it take
for the absorbed

L)

Solution hydrogen to permeate
through the oxide?



T10, Deposited on Pd

** Due to complications caused by formation of hydrides in Ti
metal, a thin TiO, film deposited on a Pd foil was used.

*» Pd was selected because of its high hydrogen solubility and rapid
Kinetics for hydrogen absorption and transport.
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Hydrogen Permeation Measurements

Ar gas H Charging Potentiostat
(i, = 80 nA/cm?) (E=0.18 Vgce)

Specime

H charging solution Testing solution
(0.27M NaCl) TiO,/Pd (0.01M Ki)



Hydrogen Permeation Curve
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Hydrogen Permeation Model
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Hydrogen Permeation in Pd
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H permeation (i/i )

Simulation vs Experiment for Pd

0.8 |-

0.6 |-

04

0.2 |-

0.0

0.0

2.0x10*

4.0x10°* 6.0x10"
Time (seconds)

8.0x10"

11



Evolution of H Profiles in Pd
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T10, Deposited on Pd

% Large geometric scale variations in TiO, and Pd (24nm:0.1mm)
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Three approaches:

Actual dimensions but different mesh densities —
simulations appear to yield reasonable results for certain
parameter values but not for others.

Different length scales in the TiO, and Pd —

the diffusion and absorption parameters are normalized
accordingly. However, normalization of the flux is
ambiguous at the T1O,/Pd interface.

Thin layer approximation (Sandwich model) —

the thin TiO, film is replaced by a boundary layer
sandwiched between a hypothetical fast diffusion layer
(FDL) and the Pd.
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Sandwich Model

TiO,

FDL I Pd

Lol Lpg

“+ The FDL is a hypothetical layer in which diffusion is so fast
that it has a little effect on the subsequent TiO, and Pd.

% The thin TiO, film is replaced by an interior boundary layer
between the FDL and the Pd. Diffusion in TiO, Is incorporated
as Interior boundary conditions.

*» The Pd is governed by the mass balance equations as stated.
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H permeation (i/i )

Simulation vs Experiment for T1O,/Pd
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Sensitivity to Model Parameters

0.8

=
=)

=
e

H perpeation (ifi0)

=
i

0 b

0 02 04 06 08 1 1.2 14 16 1.8 2 22

Time (second) x 105

Effect of H diffusion in TiO,:
— DHTi02 — 10-16 m2/s
— DHTi02 — 10-17 m2/S
— DHTiOZ — 10-18 m2/s

H permeation (i;’io)

0.8

e
a

<
=

<
o

0

0 02 0406 08 1 12 14 16 18 2 22

Time (second) x1 05

Effect of TiO, thickness:
— Lo, =12 nm
= Lo, =24 NM
— L5, =36 M

16



Conclusions

% Models describing hydrogen permeation through a thin TiO,
film deposited on Pd were developed and solved using
COMSOL Multiphysics.

*» The model simulation reproduced the experimental permeation
curves and yielded values of the permeation parameters
required to predict hydrogen absorption into Ti-alloys.

% The value of D in TiO, is three orders of magnitude lower than
that in Ti metal, indicating that hydrogen transport through the
oxlide Is responsible for the strong retardation of TiO, films on

hydrogen permeation. -
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Simulation Parameters

Value Description
Iy 8 x10* A/m? charging current density
f 0.7325/0.6935 charging efficiency (Pd / TiO,+Pd)
t 62000 / 149000 s charging time (Pd / TiO,+Pd)
L, 1x10°m FDL thickness
L, 2.4x108%m TiO, thickness
L, 0.0001 m Pd thickness
D, 1x10° m?/s diffusion coefficient in FDL
D, 1 x10Y" m?/s diffusion coefficient in TiO,
D, 3.34 x10't m%/s diffusion coefficient in Pd
Ka 1st absorption rate constant in Pd
Kp 0.0125s? desorption rate constant in Pd
K; 10 st trapping rate constant in Pd
C;> |0.58 mol/m?3 trapping saturation in Pd




FDL:

TiO, interface
condition:

Steady-state

concentrations:

Discharge
boundary
conditions:

Sandwich Model Equations

Dlacl(xz I—o’t >toff):O
C,(x=

L, +L,,t>t,)=0

0 o2
aCO(X,t) — Doyco(x,t) (DO >> Dl’DZ)
3,(t) == (C, (L) - Cy (Ls:1))
L,

. A fi, (L L,
C(x)—F () F(D1+D2]
Cr(x)= . (Ly+ LX)

F-D,
Cr(0) = k—Ac;%x); CP(x)=Cy

0
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