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Abstract: Heat transfer from a sphere having a 
uniform temperature and falling axially in a 
cylindrical tube filled with an incompressible 
power-law liquid is numerically investigated. 
The effects of varying the Reynolds number 
(Re), Prandtl number (Pr), power-law index (n), 
and the sphere-to-tube diameter ratio (λ) on the 
local and mean Nusselt numbers (Nu) have been 
extensively examined over the following ranges 
of conditions: 5≤Re≤100, 1≤Pr≤100, 0.2≤n≤1, 
and 0≤λ≤0.5. It was found that the wall effects 
on the mean Nusselt number diminish 
progressively with decreases in the power law 
index and the Reynolds number.  
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1. Introduction 
 

Heat transfer from a sphere to surrounding 
power law fluids is found to take place in various 
industrial processes, such as in thermal 
processing of foodstuffs, fixed and fluidized bed 
reactors, and slurry reactors. Although in most 
practical applications non-spherical particles 
and/or ensembles of particles are encountered, a 
thorough understanding of the hydrodynamic 
behavior of a spherical particle is germane to 
developing useful insights into the behavior of 
non-spherical particles and/or their clusters. Over 
the years, a considerable amount of literature has 
addressed the problem of fluid flow and heat 
transfer past a sphere in an unconfined region, 
especially in Newtonian fluids and to a limited 
extent in power-law fluids.1-4 However, the flow 
over a sphere in a confined region is encountered 
in various applications such as falling ball 
viscometry, hydrodynamic chromatography, 
membrane transport, and hydraulic transport of 
coarse solids in pipes. A few authors5-6 have 
taken into account the finite wall effect on flow 
and heat transfer, but this treatment is limited to 
Newtonian fluids. It should be noted that 
numerous fluids of industrial importance display 

shear-thinning characteristics which are 
conveniently approximated by the simple power-
law model. Indeed, many of these fluids 
(polymer melts, polymer solutions, food 
emulsions, suspensions, and biological fluids) 
exhibit a value of the power-law index, n, 
typically in the range of ~0.2 and ~0.8.7 Our 
recent work8 has investigated the interplay 
between the degree of confinement and the 
power-law index on the drag from a sphere over 
wide ranges of the pertinent kinematic and 
physical parameters. This paper is a continuation 
of our previous work, and here the effects of 
confinement, power-law index, and changes in 
the Prandtl number on heat transfer are 
examined. In particular, the influences of sphere 
Reynolds number, Re varying from 5 to 100, the 
sphere-to-tube diameter ratio, λ varying from 0 
to 0.5, the power-law index, n varying from 0.2 
to 1, and the Prandtl number varying from 1 to 
100 (maximum Pe=Pr.Re equals 4000) are 
elucidated on the Nusselt number.  
 
2. Governing Equations 
 

Consider a scenario in which a sphere with a 
diameter d located at the axis of a cylindrical 
tube having a diameter D falls at a steady 
velocity V0 in a tube filled with a quiescent 
power-law liquid with a temperature T0. This 
situation is tantamount to the fluid moving with a 
uniform velocity V0 and temperature T0 around 
the stationary sphere as shown schematically in 
Figure 1. Notice that the wall also moves at the 
same velocity V0. Here, the boundary condition 
for temperature on the surface of the sphere is 
taken to be a constant temperature TW, although 
it is slightly more complicated in practice. To 
simplify the model, the fluid is assumed to be 
incompressible with constant physical properties. 
In addition, viscous dissipation is neglected. It is 
worth mentioning that the assumption of consta-
nt physical properties limits the application of 
these results to some moderate temperature 
difference between the sphere and the bulk fluid. 
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Figure 1. Schematic diagram of flow around a 
sphere in a tube. 
 

For a two-dimensional, axisymmetric, steady 
flow in cylindrical coordinates, the governing 
equations in tensor form are as follows, 

Continuity equation 

0=•∇ U      (1) 

Momentum equation 

σρ •∇=∇• UU     (2) 

Energy equation 

TkTUcp
2∇=∇•ρ    (3) 

in which U, ρ, σ, cp, T, and k are the velocity 
vector, fluid density, total stress tensor, specific 
heat, temperature and thermal conductivity, 
respectively. The total stress σ can be split into 
two parts, an isotropic pressure p and a 
deviatoric stress τ, i.e., 

τσ +−= pI    (4) 

For incompressible power-law fluids, τ can be 
expressed as 
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where m is the consistency index, n is the power 
law index, and I2 is the second invariant (a 
scalar) of the shear rate tensor, γγ && : . The shear 
rate tensor γ&  is defined by 

( )TUU ∇+∇=γ&    (6) 

Note that when n=1 and m=μ, Eq. (5) reduces to 
the Newtonian fluid constitutive equation. 
Substituting this equation into the momentum 
equation (2) yields the Navier-Stokes equation. 
The boundary conditions for the velocity and 
temperature variables are taken to be as follows, 
(1) at the inlet 

Ur=0, Uz=V0, T=T0 

(2) on the tube wall 

Ur=0, Uz=V0, 0=
∂
∂

r
T

 (adiabatic) 

(3) on the sphere surface 

Ur=Uz=0, T=TW 

(4) At the axis of the tube 

the position of r=0 is set to be one of axial 
symmetry 

(5) At the exit 

pressure is set to be zero and no viscous 
stress in implemented. The axial temperature 

gradient is set to zero, i.e., 0=
∂
∂

z
T

 

Once the above governing equations along 
with the associated boundary conditions are 
numerically solved, the solutions are usually 
manipulated to compute some macroscopic 
quantities of interest. Here, it is useful to 
introduce some dimensionless numbers such as 
Re, Pr and Nu.  

The Reynolds number for the falling sphere, 
Re is defined by 

m
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The Prandtl number, Pr is expressed as 
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The local Nusselt number  Nuθ on the surface of 
the sphere is evaluated by 
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in which hθ is the local convective heat transfer 
coefficient, and N is the normal direction along 
the sphere surface. The local Nusselt number can 
be integrated over the entire sphere surface and 
the result divided by the sphere surface area to 
yield the mean Nu, which is given by 

θθ
π

θ dNu
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hdNu sin
2
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3. Numerical Solution Procedure 
 

In this paper, the momentum equation and 
the energy equation, together with the above 
appropriate boundary conditions, were solved in 
a segregated manner using COMSOL 
Multiphysics software (version 3.5a). The flow 
geometry was drawn by means of the built-in 
CAD tools, and “quadrilateral” elements of the 
non-uniform grid were generated using the built-
in meshing function of COMSOL Multiphysics 
as well. Lagrange-P2P1 scheme was chosen to 
handle the velocity-pressure coupling, while a 
Lagrange-Quadratic scheme was selected to 
approximate the elements when discretizing the 
energy equation. COMSOL modules utilizing the 
non-Newtonian power law viscosity model and 
heat convection and conduction were used. 
Details about solving the momentum equations 
are available in our previous paper.8 The relative 
convergence tolerance of all the variables was set 
to 10-6. Once the flow domain was mapped in 
terms of temperature, values of the global 
characteristic quantities such as the local or mean 
Nusselt numbers on the sphere surface were 
obtained through COMSOL postprocessing.  

 
4. Results and Discussion  
 

Before presenting the results, it is necessary 
to describe the choice of domain and grid 
employed. Based on previous experience, both 
the upstream Lu and the downstream Ld were 
taken to equal 65d. For computing results related 
to the unconfined situation, i.e., λ=d/D=0, a 

sphere-in-sphere configuration was utilized. The 
outer sphere radius, R∞=500R was used to mimic 
the limiting case of λ→0. Except for this 
situation, a sphere-in-tube configuration was 
employed in all other cases. Computational 
details are available in our earlier work.8 
 
4.1 Validation  
 

In order to obtain confidence in the results, 
computations were first performed for heat 
transfer from an unconfined sphere to Newtonian 
liquids. These results are listed in Table 1 and 
are compared with the limited results available in 
the literature.3,6,9,10 Kaviany9 proposed the 
following equation to approximate the mean Nu, 
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Another correlation was presented by 
Whitaker,10 
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Here, ( ) 41

0μμb  was taken to be unity based on 
the assumption of physical properties being 
independent of temperature. As can be seen from 
Table 1, our calculations of the mean Nusselt 
number are in good agreement with literature 
results.6,9,10 In the presence of finite wall 
confinement, a similar comparison of average 
Nusselt numbers is tabulated in Table 2. Again, 
the present computational results agree very well 
with those obtained by Maheshwari et al.6 Table 
3 shows the comparison of local Nusselt 
numbers calculated by us with the results of 
Dhole et al.3 at the front stagnation point (θ=0°) 
and the rear stagnation point (θ=180°) at λ=0 
and Pr=10. For Newtonian fluids, both results 
are very close. However, they deviate as n 
decreases. It is not surprising that the difference 
becomes larger as n decreases. As n becomes 
smaller, the reliability and stability of numerical 
simulations are found to deteriorate.  
 
 
 



Table 1. Comparison of average Nusselt number 
for an unbounded sphere (λ=0) at Pr=7 
 

Re Present 
work 

Mahe- 
shwari 
et al.6 

Eq. (11) Eq. (12) 

1 3.1001 3.103 2.999 3.002 

5 4.691 4.691 4.734 4.33 

10 5.857 5.859 5.938 5.36 

50 10.486 10.545 10.517 9.94 

70 11.964 12.089 11.922 11.51 

100 13.874 14.155 13.939 13.53 

 
Table 2. Comparison of average Nusselt number 
at Pr=7 
 

 λ=0.1 λ=0.5 

Re Present 
work 

Mahe- 
shwari 
et al.6 

Present 
work 

Mahe- 
shwari 
et al.6 

1 3.172 3.172 3.7 3.697 

5 4.737 4.736 6.173 6.173 

10 5.895 5.894 7.583 7.584 

20 7.498 7.497 9.385 9.387 

30 8.695 8.695 10.679 10.681 

50 10.544 10.548 12.658 12.66 

70 12.067 12.072 14.315 14.312 

100 14.082 14.092 16.532 16.527 

 
4.2 Effects of Reynolds number (Re), 
Diameter ratio (λ) and Prandtl number (Pr) 
on the local Nusselt number (Nuθ) 
 

Figure 2 shows the effects of Re, n and λ on 
the local Nusselt number on the sphere surface 
under the conditions of constant wall 
temperature and constant Pr of 20. For purposes 
of illustration, results are presented for Re equal 
to 10 and 100, n equal to 1, 0.6 and 0.3 and λ 
equal to 0, 0.2 and 0.5. The variation of local 
Nusselt number for Newtonian fluids exhibits 
markedly different behavior from that of shear-
thinning fluids as shown in Figure 2. For 
Newtonian fluids, in the absence of vortex 

Table 3. Comparison of local Nusselt number at 
λ=0 and Pr=10 
 
Re n θ=0° θ=180° 

  Present 
work 

Dhole 
et al.3 

Present 
work 

Dhole 
et al.3 

10 1 10.215 10.218 1.84 1.875 

 0.8 10.538 10.457 1.803 1.854 

 0.6 10.943 11.286 1.758 1.654 

100 1 29.583 30.696 8.814 9.765 

 0.8 30.742 31.979 8.763 9.061 

 0.6 32.1 36.543 8.679 10.09 

 
formation (Re=10), the local Nusselt number is 
relatively large at the front stagnation point 
(θ=0°), and it then decreases monotonically 
along the surface to a minimum at the rear 
stagnation point (θ=180°). When Re equals 100, 
and there is now flow separation and vortex 
formation, the Nusselt number decreases from its 
maximum value at the front stagnation point 
until near the separation point; beyond this, a 
progressive increase in Nusselt number is 
observed up to the rear stagnation point. By 
contrast, for shear-thinning fluids, whether for 
Re = 10 or Re = 100, as can be seen from Figure 
2, the local Nusselt number first increases from 
θ=0° to approximately θ=30°, and then it 
decreases.  Thereafter, the behavior is similar to 
that of Newtonian fluids, depending on the 
Reynolds number. In other words, the maximum 
Nusselt number for shear-thinning fluids is not at 
the front stagnation point, but somewhere away 
from it. In addition, this phenomenon is 
facilitated with the increasing degree of shear-
thinning. A further examination of Figure 2 
reveals the following information. The local 
Nusselt number, as expected, increases with Re. 
It also increases as n is gradually reduced below 
unity. As n decreases, the fluid becomes more 
shear-thinning, that is to say, the effective 
viscosity of liquid near the sphere decreases, 
increasing Re locally. This decrease in viscosity 
results in large velocity gradients near the sphere 
surface. As a consequence, convective heat 
transfer is promoted and the local Nusselt 
number increases. Apart from the above, a 
comparison of Figures 2(b) and 2(c) with Figure 



2(a) shows that the local Nusselt number 
increases with the severity of confinement. This 
can again be attributed to the changes in the 
velocity gradient near the sphere. With 
increasing degree of confinement, velocity 
gradients near the sphere become sharper,8 which 
facilitates heat transfer. Therefore, the heat 
transfer problem is inherently connected with 
fluid flow. Finally, as expected, the local Nusselt 
number increases with the Prandtl number as 
shown in Figure 3. 

It is necessary to point out that there exist 
kinks in the curves of the local Nusselt number 
when Pr becomes larger at n=0.2 as shown in 
Figure 4. These kinks may be due to a numerical 
instability. As mentioned before, the convergen-
ce and accuracy of numerical solutions are 
deteriorated as fluids become increasingly shear-
thinning. This situation is aggravated at higher 
Prandtl numbers. 
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(c) 
Figure 2. Local Nusselt number on the sphere 
surface at various Reynolds numbers and power 
law indices for (a) λ=0, (b) λ=0.2 and (c) λ=0.5 
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Figure 3. Local Nusselt number on the sphere 
surface at various Prandtl numbers 
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Figure 4. Local Nusselt number on the sphere 
surface at Re=100 and n=0.2 
 
 
 
 
 



4.3 Effects of Reynolds number (Re), 
Diameter ratio (λ) and Prandtl number (Pr) 
on the mean Nusselt number (Nu) 
 

Figures 5 and 6 show the effects of λ, Re and 
n on the mean Nusselt number at Pr=20 and 1, 
respectively. Both the local and average Nusselt 
numbers increase with increases in Re, Pr and λ 
and/or a decrease of n. An inspection on Figures 
5 and 6 reveals that the wall effect is less severe 
in a more shear-thinning fluid at both low and 
high Prandtl numbers. This conclusion is similar 
to the effect on drag coefficient.8 Additionally, 
the wall effect gradually diminishes with a 
decrease of Re. In particular, the wall effect is 
not appreciable at a low Pr and a small n as 
shown in Figure 6(c). 
 
5. Conclusions 
 

The governing equations for simultaneous 
flow around a confined sphere and heat transfer 
to power-law fluids were solved numerically 
using COMSOL Multiphysics. Extensive 
numerical results are reported here which 
delineate the effects of Reynolds number Re, 
power-law index n, tube-to-sphere diameter ratio 
λ, and the Prandtl number Pr on the local and 
average Nusselt numbers. The ranges of 
conditions: were: 5≤Re≤100, 0.2≤n≤1, 0≤λ≤0.5, 
and 1≤Pr≤100. In general, due to confinement, 
the fluid close to the sphere is subject to intense 
shearing. This lowers the effective viscosity and 
raises the Reynolds number locally. As a 
consequence the local Nusselt number increases 
as compared to the situation for the unconfined 
sphere. This has direct applications in thermal 
processing of food particles in carbopol solutions 
where the food particle to tube diameter ratio can 
be as high as 0.3 to 0.4. Therefore, an increase in 
the rate of heat transfer should translate into a 
shorter residence time or increased throughput 
for a specified experimental set-up. 
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Figure 5. Dependence of mean Nusselt number 
on Re, λ and n at a constant Pr of 20 (a) n=1.0, 
(b) n=0.6 and (c) n=0.2 
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Figure 6. Dependence of mean Nusselt number 
on Re, λ and n at a constant Pr of 1 (a) n=1.0, (b) 
n=0.6 and (c) n=0.2 
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