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Water is one of the Most Plentiful
Compounds in the Universe

« Earth’s water came from comets early in its history.

 Mars has vast quantities of water not only at the poles but also
at lower latitudes (>559).

 Significant quantities of water are present on several moons of
Jupiter (Europa, Ganymede, and Callisto), Saturn (Enceladus),

and Neptune (Titon).



Chronology of “Water on the Moon”

1959, prior to Apollo, scientists Speculated that there should be some residual water on
the moon from cometary impacts.

Apollo found “no water”.

1994, the SDI-NASA Clementine spacecraft mapped the surface. Microwave radio
signals from South pole shadowed craters were consistent with the presence
of water.

1998 — Prospector - Neutron Spectrometer — high H concentrations at poles
September 2009 — water observed at diverse locations of moon
Chandrayaan-1 - Moon Mineralogy Mapper (M3)
Cassini - Visual and Infrared Mapping Spectrometer (VIMS)
EPOXI spacecraft - High-Resolution Infrared Imaging Spectrometer

October 9, 2009 - Lunar CRater Observation and Sensing Satellite - LCROSS



1998- Lunar Prospector

Hydrogen Maps of the Lunar Poles

NORTH POLE

HYDROGEN CONCENTRATION

1998 Lunar Prospector - Neutron Spectrometer scanned for
hydrogen-rich minerals. Polar craters yielded neutron ratios which
indicated hydrogen => H20

Average H20 concentration ~2% -> Theoretically approaching Billions of tons

http://www.thespacereview.com/article/740/2



Lunar CRater Observation and
Sensing Satellite - LCROSS

 THIS MORNING the Centaur upper stage impacted a permanently
shadowed crater, Cabeus A near the south pole of the Moon.

« Mission Objective - confirm the presence of water ice in a
permanently shadowed crater at the Moon’s South Pole.

« Spectral analysis of the resulting impact
plume will look for water ice.

Crater Cabeus A »
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lllumination of the South Polar Region
of the Moon over one Lunar Day (28 days)
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Importance of Water

« Water (and oxygen) for the manned lunar outpost.
Resupply requirements:
1 ton water and 1 ton oxygen per year
~$10,000 to $100,000/ pound from Earth to moon
Increasing to 10 tons per year

 Eventually (perhaps) - rocket propellant for exploration,
Electrolyze water into H and O,
liquify to LOX and LH
10’s of tons not launched out of Earth’s
gravitational well.



Water on the Moon

The water on the moon is in a number of different forms.

Chemically Bound water — Hydroxyl groups -OH

 The hydroxyls can be on the surface of the grains of soil.
 They can also be part of the chemical composition of the rock.
* This could include other hydrated chemical species (at the poles).
« Relatively small weight percent measured in Apollo soils.

Molecular water H20

 Recently measured water vapor near the lunar surface.

« Water molecules lightly bound to Si+ dipoles on the surface of
grains of lunar soil.

 Water ice physically condensed at poles. This physically
condensed cryogenically trapped water ice is speculated to be
present in relatively high concentrations
(on the order of 2 weight percent),

This is the water we have proposed to extract with microwaves.



Use of Microwaves for the
Extraction of Lunar Water

Lunar Soil (in vacuum) is a Super Thermal Insulator
Is like an aerogel, very low heat flow.

Microwave energy penetrates the soil heating from the
Inside out. Penetration depth is dependent
on Frequency and dielectric properties.

Conversion from electricity through microwaves to heat,
efficient, heating causes sublimation of water ice.

Excavation may not be required,
Cryogenic water ice is as hard as granite
Saving energy, infrastructure, and equipment
Little if any disruption of lunar dust (hazard)



“*Moon in a Bottle”
Laboratory Proof of Principle

Fused silica vessel with lunar permafrost simulant.



Experimental Facilities

- Standardized lunar regolith simulant (JSC-1A), particle
size distribution and chemistry of (Apollo 14).

« Water ice concentration (2 weight %, 29)

« Temperature (-196 to -50C), LN2,

 Vacuum level (10-5 torr),

Bench top microwave facility

Vacuum quartz lunar regolith
simulant vessel

Liquid nitrogen cold-trap

Turbo-molecular vacuum pump

LN2-cooled regolith simulant

Microwave oven chamber

>
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Extraction Efficiency

* Microwaves coupled well to soil simulant at LN2 temperature.

* The regolith and the cold trap were weighed before and after
the experiment.

» At least 95% of the water added to the regolith simulant was
extracted (in 2 minutes) all below 0°C.

« Of the extracted water 99% was captured in the remote cold trap.



Microwave Lunar Water Extraction Prototype

« Magnetron source (2.45 GHz, 1100 W) with
Isolator, auto-tuner and copper high-gain
horn.

« Mounting provides mobility over surface
and height adjustment of horn.

« Temperatures within the bed of simulant

(JSC-1A) were made using fiber optic
temperature sensor in place during heating.
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"« Vacuum chamber
evaluation of the
microwave penetration
and water vapor -->%
permeability through B
' lunar soil simulant.
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Dielectric Property Measurements
Lunar Soil Simulant — JSC-1A

With Frank Hepburn - EM20 . — -z 3

*Our custom fabricated 10 GHz (range 8 — 12 GHz) X-band waveguide
apparatus for dielectric measurements over arange of temperatures,
LN, to above room temperature.

*Heating coils near the coax connectors (not shown) keep the
Instrument connections at room temperature while the sample
residing between the cooling the coil is chilled with free-flowing LN,



Dielectric Properties of JSC-1A Simulant
X-band 10 GHz, room temperature

Real and imaginary

1. Electric Permittivity
(dielectric constant &
Loss factor) and

2. Magnetic Permeability

We expect that Nano-
phase Fe in lunar soil
will significantly affect
the permeability.

Proposal pending:
Loan of Apollo Soil
sample to measure
dielectric properties.

real permitivity (e') & permeability (u’)
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Temperature Dependence (-73C to 63C) of the
Dielectric Properties of Lunar Soil Simulant JSC-1A

JSC-1A Permitivity vs Temperature
X-band, 8 to 12 GHz, Oct 30, 2007
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Three Microwave Frequencies

<- 0.9 GHz

10 GHz -> <- 2.45 GHz

Microwave flanges for the three different microwave frequencies (0.9 GHz, 2.45
GHz and 10 GHz) used in this project showing the relative sizes of the
experimental and test measurement hardware. Their standard sizes are
designated WR975, WR340 and WR90 respectively. Each microwave frequency
requires different geometry for COMSOL.
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Electromagnetism
Coupled with

Steady-State

Heat Transfer by
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Isosurface: Temperature [K]
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RFW coupled with Heat Conduction - Transient
Temperature Isotherms, 10 hours
Click to start animation
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RFW coupled with Heat Conduction - Transient

Temperature Isotherms, 10 hours
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Application of COMSOL

Processing parameters and hardware requirements for water
extraction is a complex multi-physics problem.

Microwave coupling to materials and heating is dependent on
frequency and materials properties.

Materials properties are a function of frequency and temperature.

Can calculate microwave penetration and heating, with frequency
and temperature dependent lunar soil dielectric properties.

To Do — Model the Percolation of water vapor through the soil
(porous media) characterized by the Darcy constant (currently
being measured by Southern Research Institute).

Parametric modeling will permit the evaluation of processing
parameters most suitable for prototype hardware development,
testing, and trade studies.
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