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FACVD method ...

1 Deposition of polymer films — with original
functionality without introduction of a damage

d FACVD , ICVD - dry process and non-plasma
environment

4 Suitable precursors are thermally activated into
radical components which participate directly on
the film growth or are initiating those processes

 Substrate at room temperature

d Thermal activation by very moderate
temperatures ~ 200 °C - several hundreds

4 Applications extending from semiconductor
technology into nanotechnology

TEL US Holdings, Inc. Technology Development Center, Jozef Brcka



CoMs0OL
CONFERENCE

Motivation ...

U Air-gap applications in semiconductor devices:
The basic principle consists of dielectric material
removal (from in-between the metal lines)

L Other applications: organic devices, bio-
passivation, 3D interconnect, and energy

BDETDN|

v' Transfer specific process from laboratory
experimentation towards semiconductor
processing tool

v' Match and optimize chemistry and process -
enhanced flexibility of a process development

Porous Cap — = AIR GAP DAMASCENE INTEGRATION Dense Cu Cap

IMD (SAC) Air Gap

Decomposition bake
Sacrificial material (decomposable polymer) is selectively

removed through a dielectric permeable cap 3
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Precursors and chemistry

3 Precursors w low EGDA TBPO MTEOS
decomposition T ETHYLENE GLycoL | TERT-BUTYL § METHYLTRIETHOXY-
DIACRYLATE PEROXIDE SILANE

0 Compatibility with .
semiconductor processing CsH 4,0, CegH10,| C,H ;0551

d More complex mixture and 00—
. . ~ G'\ I
chemistry for an increased Hch'\r(o\/\obc'*‘ Ko —Si-0
adhesion, film properties, 0 0.~

“LOGIC SWITCHES” |mplemented to use same model for different chemistry

Process selection |

| PROCESS “A” |—>|-kA =1k, = Oj \

s ’ - —1 RESULTANT
[ PROCESS “B |—§>|'_kA —0,k, =1]] S RESULTANT
| PROCESS “A+B” H[kA —1k, = '|
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conremines | - <X FACVD model
Comsol-based scheme (v.3.5)

GEOMETRY GAS FLOW INITIAL
CONFIGURATION Il CONDITIONS
Materials & gas media

properties HEAT TRANSFER 1 BOUNDARY
1 CONDITIONS
Coupled flow and
- : monomer (precursor) pa 11
chemical reactions : SURFACE
Mmlp l I CRR— REACTIONS
: MECHANISM AND
Hodel epler —> CONVECTION & DIFFUSION  |¢= POLYMER FILM
L Denersssth Nolr stores (dv2) __ initiator W  GROWTH MODEL
2 General Heat Transfer (htgh) j E '
& 3 Convection and Diffusion {chcd) = CONVECTION & DIFFUSION |
4 Convection and DiFfusion (ched?) radicals

5 Convection and Diffusion (ched3)

Solution parameters: e asmsmssmsmssnEEnEn .
Stationary Analysis types

E Direct (PARDISO) solver
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‘ @' Model geometry & features

Gas & precursor inlets
iI R SRR,

n

Heating elements ~280 — 800 °C
| [ | I

controlled wall’s
1 / temperature
I I | I
Wafer & Al, O, coating

Includes wafer and ceramic

coating (alumina) thermal

mass and properties |

I HI eiTves Bveeloves
Wafer support with controlled @ /
f tempera ficient §
water Temperature [°C] cooli annels

G36.45]- | |d_| L I_+_

- — t . . .

36,35 'rra}nﬁ'on 7./ 2D model in Cartesian coordinate system

= - Z

©36.25 // O Detailed inlets geometry
£36.15
2

36.05

0 0.04 0.08 0.12 0.16

e

d Radiation from heater elements to wafer
(analytical approach - it consider a
heater’'s element geometry)

U Variable coating thickness under wafer
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3D model - gas flow computation

page file usage up
to 18.5 GB

dual duo-core CPU
usage at 100 %

. 3 C o
ge? o ge® 3 Specific asymmetry due to
| | multi-linear heater and quasi-
To achieve converging axial symmetry of the flow
solution in full geometry — _
ongoing recurrent  Approach for 3D computations
simulations were to validate 2D cartesian model
performed

d = Significant time resources
could be saved
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=o=ToN | Meshing properties
Mesh Statistics

'GlaBalY subdomain | Boundary | Point | ® Mesh size
~0.1 mm -5 mm

Extended mesh:
MNurmber of degrees of freedom: 365681

R RA e Ay
ISR

vy
%%‘a; :

A | N N VAN TS T |/
NSRRI
4 ﬁ%‘ S ‘*’1#1‘?‘

&
Base mesh: LA VATA
|\

by
Mumber of mesh points: 16234 | ] 2?: i:{:{%

Number of elements: 32151 f)’\ N - |
Triangular: 32151 K |V 4
Quadrilateral: 0 ' |

MNumber of boundary elements: 1616

MNumber of vertex elements: 126

Minimum element quality: 0.7892

3.84E-4

Element area ratio:
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3 IS accounted on the wafer
. . -2 4
! Assumed radiosity at particular  J, Mm ]= EOTier
4 temperature of the ribbon £~0.03-0.75
b "‘I'o’t’a}l irradiation into_point G ~G +G°
C” is sum of radiosity cC ~ “~AC BC
7/ R from surface “A” and “B” ad] A
y 4 . .. ofallindividual elements G = oMo
“~ N 27z[d2 +(r-r) ]3
. adl, 4w, , b(d +b/2)
Ggc = ) 5 B2 X ) 5 13/
; 27r[d +(r-r) ]3 o (d+b/2f +(r-r,)
d?+(r-r,)
e=~0.5 ; ”
Aw,, ~ [1+(r—re)2/d2T
................. . 4 4
.......... J wafer — gG(Theater o Twafer )
""" %~ unitarea
A 4 2y

) irradiation into the point
r\_/“C” at the wafer surface
9
April 9, 2009 ..
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Heater averaged temperature
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Point Integration Variables

TN s, . S—
..................... T Point Integration Yariables
............. ... heater
ame , . Bxpression  Global destination |
............ .
........... 4 :
vV = e Sams®

Surface: Temperature [K]

n
1 B i

e v!| [TRRIO
r {aso0 [v] Select by group

HEEEEEEEEEEIE]

100

////m\\\\\\\ 250 ummm Detalil of the single

' Streamline: Conductive heat flux N€ating element

10
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Irradiation geometry

The irradiation of the
shield is accounted in

. model

Al =
-
N -
-
~ -

The irradiation from I Arbitrary points on
virtual half of reactor I -
1 i< accounted ' wafer and shield
|

Virtual portion of the model 1 Modeled geometry
radiation - loss at elements and increased T at Irradiation [W/m?]
wafer - J_wafer
radiosity is uniform from planar heating assembly >400 ~
(planar source, no edge effect) 55200_ \l\\
No integration in normal direction to geometry "2150002 Sem';}f:j;}’t'ca'

. : . ~4800

Reflection on the wafer and ribbons is setto =0 4600 \
Formally, the alumina coating is assumed to be 1 Aan \
micron thick (actual geometry is 1 mm thick) S0 0.04 0.08 0.12 0.16
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sosTon | § Impact of NICr emissivity

1400

L Model without O Clean surface emissivity from 0.2
1200 F  radiation 4 to 0.3 — aging over time
1000 -, A | Q Modelprovides
300 | o ] v’ Identification of the operation window
£=0.2 A ? Q90 for particular HW geometry

v Process sensitivity to heater aging
v' To address process control issues

600

Theater (OC)

400 -
Temperature | |

200

O [ =1 1 1111l 1 11 1Ll
0.1 10 1000 S —
Qheater’ (Wcm_S)

Ref.: Y. S. Touloukian and D. P. DeWitt, Thermal Radiative Properties -
Metallic Elements and Alloys, Thermophysical Properties of Matter
(IFI/Plenum, New York, 1970).
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mep— NiCr emissivity performance
1 3000 — 11.1
=
2500 O sim. 80 W/m3 [eq. 52 W/m*] | power ,!Il—!""'"_J
== sim. 30 W/m3 [eq.19.5 W/m*] _ . /,J;.'Llﬁg S
: experiment, FACVD g 2000 ‘g™ o 11 :
B = Ref * [Zhou et al.], 164 W/m - IS Q
2000 [ @ Ref.* [Zhou et al.], 148 W/m g o O -- 'é?@ o 8
[ del FACVD @ 1000 5" 7 resioniy 1109 g
- ---- mode
~—~~ .7 =
é_) 1500 B ’ 80 W/cm?® gexp <:>Theater [
vmeltirié """ i T Ref. Zhou et al. o490l 108
—  point_ F - exp. FACVD 0 100 200 300
1000 model FACVD time (min)
i ---30 W/em® d Model correlates with published data
i e [ Good validation with measurements in
500 F our FACVD reactor
- 0 When £<0.2 increased sensitivity of
0 Lo . . . model= consideration of 3D
O “clean” NiCr (¢~0.4) to “heavily

0O 02040608 1

emissivity, ¢

oxidized” surface (¢~0.85) generates
temperature change — important for
process control

Ref.: J. Zhou, T.R. Ohno, and C.A. Wolden: The high temperature stability of nichrome in reactive environments. J.

Vac. Sci. Technol. A 21(3), May/Jun 2003, 756-761
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_ adsorption/desorption mode / Simulation was performed at process
g °F ' » conditions and iterating for sticking
= /" coefficient to fit deposition rate
g 27 / e ..
s [ /6'
'§ L iCVD mode »of
o —— & 9— — - — —
© i

3.2
1000/T [K™]

EGDA / TBPO
deposition on
wafer at substrate
temperature
T=40°C

30 Wem3; Ty e = 384 °C
1/T,,.. ~ 0.00323

el EGDA flux ~ 2x105 molecules.cm-2s-!

¢ cepn = 0.023exp(0.5945/T )|

S.H. Baxamusa, K.K. Gleason, Initiated Chemical Vapor
Deposition of Polymer Films on Nonplanar Substrates, Proc.
5th Int. Conf. on HWCVD, MIT, Cambridge (2008)

15
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BDSTDN|

Underestimated I Correct diffusivity and
x1018 m-3 diffusivity . empirical sticking coefficient y1018 m-3
reactor scaling & TBPO AR=
performance simulation radicals flux e
5 L
| =
| —_
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General mechanisms of surface reactions

A+B — AB

Langmuir-Hinshelwood

mechanism B A Langmuir-Hinshelwood mechanism B SA
A and B first adsorb on the surface. Next,
the adsorbed A and B react to form an B A —>BA B\A B\
adsorbed AB complex. Finally, the AB
Ny = A >/ T4

complex desorbs.

The reactant A chemisorbs. The A then
reacts with an incoming B molecule to form A B\BA B\A B\
an AB complex. The AB complex then ;
desorbs. »ﬁ > L A& >
Precursors mechanism A Precursors mechanism ~A
The reactant A adsorbs. Next, B collides B B /
with the surface and enters a mobile A BA B\ \A
precursor state. The precursor rebounds y ; A
along the surface until it encounters an Z =) =) 2= >
adsorbed A molecule. The precursor then
reacts with the A to form an AB complex, [2] originally Rideal and Eley did not distinguish “precursor” mechanism within
which desorbs. their definition of mechanism, however, more workers now make a distinction.

[1] Richard I. Masel, Principles of adsorption and reaction on solid 17

E surfaces. John Wiley & Sons, New York (1996) 444.
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EDNFE:DE;ZD @ Mass transport and surface
mechanism flow

hot filament. [
initiator © gp ° ® o LD
Gas phase ‘Q @ ® ... radicals
O ® monomer
Surface
reactions

(monolayer)

. . R
g
Thin film o e

(multi-layers) porosity M, e M, EE M,

O System can be analytically solved to compute surface fraction
coverage and analyze polymer growth

solved solved solved solved solved solved
HO ’HRZ ’HRO ’QM ’QM le ’QM 20 ‘

E -~ — -
- 11l
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Deposition rate and polymer composition

(i, )| s s K %2 > DR(M,}

c2 ] .
KO0 (...+ porosity )

S

DR(M 3 ) = ktang 1.0 2.0'52VM 3
DR(M 4 ) = ktang 2.20'52VM 4

Full surface chemistry models result in
transcendent nonlinear equations - very
complex solutions or unsolved cases

To avoid disambiguation within Comsol- Final film & structure of grown

based environment — substantially polymer is affected by many

simplified versions of surface chemistry fact t :
and solved analytically actors — post processing

Advantage — fast computation _ _ _ _

U model designated to verify various hypothesis on film growth
mechanism and determine empirical rate constants vs input
parameters — process engineering & development

TEL US Holdings, Inc. Technology Development Center, Jozef Brcka
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Deposition rate and polymer composition

) 0. M o +}sz > DR(M))

(..f+ porosity )

-

unknown DR(M |

J1+j2+j3)

Final film & structure of grown
polymer is affected by many
factors — post processing

U model designated to verify various hypothesis on film growth
mechanism and determine empirical rate constants vs input
parameters — process engineering & development

| == -
= .
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Conclusions

d Developed a pivotal model for FACVD /1CVD
reactor. Baseline for investigation and virtual
process development

d PROS / advantages

v' thermal performance was validated and it is in good agreement with
experiments

v Determined sticking coefficient of EGDA monomer ~ 0.023 and

effective activation energy ~ 4.94 J/mol for EGDA “iICVD mode
polymerization”

v" In virtual reactor, the film properties and complex processes can be

adjusted simply by input parameters - computational DOE and
hypothesis verification

J CONS / limitations

v' Too many adjusted and unknown parameters

v' Surface chemistry to be enhanced — it relies on a growing
experimental database

TEL US Holdings, Inc. Technology Development Center, Jozef Brcka
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dContinuing work on
upgrading chemistry,
enhancing film growth
model, conversion to pulsed
operation, ...
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