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FACVD method …
 Deposition of polymer films – with original 

functionality without introduction of a damage
 FACVD , iCVD - dry process and non-plasma 

environment
 Suitable precursors are thermally activated into 

radical components which participate directly on 
the film growth or are initiating those processes

 Substrate at room temperature
 Thermal activation by very moderate 

temperatures ~ 200 °C  - several hundreds 
 Applications extending from semiconductor 

technology into nanotechnology
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Motivation …
 Air-gap applications in semiconductor devices: 

The basic principle consists of dielectric material 
removal (from in-between the metal lines)

 Other applications: organic devices, bio-
passivation, 3D interconnect, and energy
 Transfer specific process from laboratory 

experimentation towards semiconductor 
processing tool

 Match and optimize chemistry and process -
enhanced flexibility of a process development 

Porous Cap

IMD (SAC)

Dense Cu Cap

Air Gap

Decomposition bake
Sacrificial material (decomposable polymer) is selectively 

removed through a dielectric permeable cap

AIR GAP DAMASCENE INTEGRATION
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Precursors and chemistry
 Precursors w low 

decomposition T
 Compatibility with 

semiconductor processing
 More complex mixture and 

chemistry for an increased 
adhesion, film properties, 
…

PROCESS “A” [ ]0k,1k BA ==

PROCESS “B” [ ]1k,0k BA ==

PROCESS “A+B” [ ]1k,1k BA ==

RESULTANT 
PROCESS MODE

Process selection

MTEOS
METHYLTRIETHOXY-

SILANE

4108 OHC 2188 OHC SiOHC 3187

EGDA
ETHYLENE GLYCOL 

DIACRYLATE

TBPO
TERT-BUTYL 
PEROXIDE

“LOGIC SWITCHES” implemented to use same model for different chemistry
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GEOMETRY 
CONFIGURATION
Materials & gas media 

properties 

INITIAL 
CONDITIONS

BOUNDARY 
CONDITIONS

GAS FLOW

HEAT TRANSFER

SURFACE 
REACTIONS 

MECHANISM AND 
POLYMER FILM 

GROWTH MODEL 

CONVECTION & DIFFUSION 
radicals

CONVECTION & DIFFUSION 
initiator

CONVECTION & DIFFUSION  
monomer (precursor)

Coupled flow and 
heat transfer with 

chemical reactions

FACVD model
Comsol-based scheme (v.3.5)

Solution parameters:
Stationary Analysis types
Direct (PARDISO)  solver
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Wafer & Al2O3 coating

Model geometry & features

 Detailed inlets geometry
 Radiation from heater elements to wafer 

(analytical approach - it consider a 
heater’s element geometry)

 Variable coating thickness under wafer

Includes wafer and ceramic 
coating (alumina) thermal 

mass and properties

wafer

Heating elements ~280 – 800 °C

irradiation 
incl.

controlled wall’s 
temperature

Gas & precursor inlets

sh
ie

ld

ou
tle

tWafer support with controlled 
temperature & efficient 

cooling channels

2D model in Cartesian coordinate system
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3D model - gas flow computation

 Specific asymmetry due to 
multi-linear heater and quasi-
axial symmetry of the flow

 Approach for 3D computations 
to validate 2D cartesian model

⇒ Significant time resources 
could be saved

To achieve converging 
solution in full geometry –

ongoing recurrent 
simulations were 

performed

…

page file usage up 
to 18.5 GB

dual duo-core CPU 
usage  at 100 %
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Meshing properties
• Mesh size       

~0.1 mm – 5 mm

mesh
0.1 mm

5 mm
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Radiant power from heater 
is accounted on the wafera
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Heater averaged temperature
a

b B

A

April 9, 2009

Point Integration Variables

heaterT

Detail of the single 
heating element
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Irradiation geometry

 radiation - loss at elements and increased T at 
wafer

 radiosity is uniform from planar heating assembly 
(planar source, no edge effect)

 No integration in normal direction to geometry 
 Reflection on the wafer and ribbons is set to = 0
 Formally, the alumina coating is assumed to be 1 

micron thick (actual geometry is 1 mm thick)

Modeled geometryVirtual portion of the model

Arbitrary points on 
wafer and shield

Irradiation [W/m2]

Semi-analytical 
model

The irradiation of the 
shield is accounted in 

model

The irradiation from 
virtual half of reactor 

is accounted
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Impact of NiCr emissivity

Model without 
radiation 

 Clean surface emissivity from 0.2 
to 0.3 – aging over time

 Model provides
 Identification of the operation window 

for particular HW geometry
 Process sensitivity to heater aging 
 To address process control issues

Ref.:    Y. S. Touloukian and D. P. DeWitt, Thermal Radiative Properties -
Metallic Elements and Alloys, Thermophysical Properties of Matter 
(IFI/Plenum, New York, 1970).
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  (
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sim. 80 W/m3 [eq. 52 W/m*]
sim. 30 W/m3 [eq.19.5 W/m*]
experiment, FACVD
Ref.* [Zhou et al.], 164 W/m
Ref.* [Zhou et al.], 148 W/m

model FACVD 
80 W/cm3

model FACVD 
30 W/cm3

exp. FACVD
Ref. Zhou et al.melting 

point

NiCr emissivity performance

Ref.: J. Zhou, T.R. Ohno, and C.A. Wolden: The high temperature stability of nichrome in reactive environments. J. 
Vac. Sci. Technol. A 21(3), May/Jun 2003, 756-761
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 Model correlates with published data
 Good validation with measurements in 

our FACVD reactor
 When ε<0.2 increased sensitivity of 

model⇒ consideration of 3D 
 “clean” NiCr (ε~0.4) to  “heavily 

oxidized” surface (ε~0.85) generates 
temperature change  – important for 
process control

heaterexp T⇔ε
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iCVD mode

adsorption/desorption mode

iCVD process development for SAC film

iCVD deposition

30 Wcm-3; Theater = 384 °C
1/Twaf ~ 0.00323Substrate T = 40 °C

Pressure = 2 Torr
EGDA flow：6gr/h*
Depo time：3 min
NU ~11%

EGDA / TBPO 
deposition on 
wafer at substrate 
temperature 
T = 40 °C

Simulation was performed at process 
conditions and iterating for sticking 

coefficient to fit deposition rate

EGDA flux ~ 2x1015 molecules.cm-2s-1

)T5945.0exp(023.0EGDA ≈ζ
S.H. Baxamusa, K.K. Gleason, Initiated Chemical Vapor 
Deposition of Polymer Films on Nonplanar Substrates, Proc. 
5th Int. Conf. on HWCVD, MIT, Cambridge (2008) 
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Precursor transport

EGDA

TBPO

Radical-TBPO

Underestimated                        Correct diffusivity and 
diffusivity                        empirical sticking coefficient

reactor scaling & 
performance simulation

TBPO 
radicals flux

x1018 m-3 x1018 m-3
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General mechanisms of surface reactions

B  A

B   A AB AB AB
ABLangmuir-Hinshelwood mechanism

ABBA →+

A

A AB AB AB
ABRideal-Eley mechanism

B

A

A AB AB AB
ABPrecursors mechanism

B

Langmuir-Hinshelwood 
mechanism

A and B first adsorb on the surface. Next, 
the adsorbed A and B react to form an 
adsorbed AB complex. Finally, the AB 

complex desorbs.

Rideal-Eley mechanism[2]

The reactant A chemisorbs. The A then 
reacts with an incoming B molecule to form 

an AB complex. The AB complex then 
desorbs.

Precursors mechanism
The reactant A adsorbs. Next, B collides 

with the surface and enters a mobile 
precursor state. The precursor rebounds 
along the surface until it encounters an 

adsorbed A molecule. The precursor then 
reacts with the A to form an AB complex, 

which desorbs.
[2]   originally Rideal and Eley did not distinguish “precursor” mechanism within 
their definition of mechanism, however, more workers now make a distinction.  

[1]   Richard I. Masel, Principles of adsorption and reaction on solid 
surfaces. John Wiley & Sons, New York (1996) 444.
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T
initiator

radicals
monomer

porosity

2Rθ •Rθ 0θ Mθ •1Mθ •2Mθ

2M 3M 4M

Surface 
reactions 

(monolayer)

Thin film 
(multi-layers)

polymer                  polymer

Gas phase

hot filament

Mass transport and surface 
mechanism flow

 System can be analytically solved to compute surface fraction 
coverage and analyze polymer growth

solved
2M

solved
1M

solved
M

solved
R

solved
2R

solved
0 ,,,,, ••• θθθθθθ
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Deposition rate and polymer composition

 model designated to verify various hypothesis on film growth 
mechanism and determine empirical rate constants vs input 
parameters – process engineering & development
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Final film & structure of grown 
polymer is affected by many 

factors – post processing
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Full surface chemistry models result in 
transcendent nonlinear equations - very 
complex solutions or unsolved cases

To avoid disambiguation within Comsol-
based environment – substantially 
simplified versions of surface chemistry 
and solved analytically
Advantage – fast computation
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Deposition rate and polymer composition

 model designated to verify various hypothesis on film growth 
mechanism and determine empirical rate constants vs input 
parameters – process engineering & development
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Methods used in 
Modeling & Simulation 
in Materials Science & 

Engineering
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Conclusions 
 Developed a pivotal model for FACVD / iCVD 

reactor. Baseline for investigation and virtual 
process development

 PROS / advantages
 thermal performance was validated and it is in good agreement with 

experiments
 Determined sticking coefficient of EGDA monomer ~ 0.023 and 

effective activation energy ~ 4.94 J/mol for EGDA “iCVD mode 
polymerization”

 In virtual reactor, the film properties and complex processes can be 
adjusted simply by input parameters - computational DOE and 
hypothesis verification 

 CONS / limitations
 Too many adjusted and unknown parameters
 Surface chemistry to be enhanced – it relies on a growing 

experimental database
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