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Abstract: Heat conduction through a slab,
0 ≤ x ≤ W is one dimensional. However, if
one of the edges, say x=0, is rough the con-
duction will be two dimensional. The two di-
mensionality varies with the correlation length
with a maximum at a length approximately
10% of the slab width. The maximum per-
centage standard deviation of the flux is of
the order of 3 time that of the roughness.
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1. Introduction:

Consider the conduction of heat through a
slab of thickness W and unit depth whose
rough surface at x = 0 is presumed to be
locally random with a correlation length L,
Figure 1. Because of the two dimensional na-
ture of the surface, both x and y components
of heat will exist. For a value of L that is
small in relation to the slab width W , i.e.,
approaching white noise, the effects are intu-
itively expected to attenuate quickly with in-
creasing distance into the slab. For larger val-
ues of L, implying smoother variations with
respect to y, the effects are expected to prop-
agate with little change through the thickness.
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Figure 1 Schematic of a Slab with
a Rough Surface

Let the deviation of the edge from the nominal
value of x = 0, defined as r(y), be character-
ized by the random field, ξ(y), such that

r(y) = σξ(y) (1)

where ξ(y) is a random field whose mean at
any specific value of y is zero with a standard
deviation of unity and σ is the standard devia-
tion of the field. ξ(y) has a spatial correlation
length of L. If L = 0, i.e., ξ(y) is characterized
by white noise, we expect that the region in
which the conductive flux is two dimensional
will be very thin and to approach zero in ex-
tent while if L is large in comparison to H ,
ξ(y) will be nearly constant with respect to
y, i.e., be a random variable with ξ(y) = ξ
and the heat transfer will approach that of
one dimensional conduction with values per
unit depth of

qx =
k ∆T

W
with σ(qx) ≈ qx

σ(ξ)

W
(2)

where the overbars represent averages. With-
out detailed analysis, it might then be rea-
sonable to assume that the region in which
two dimensional conduction is important will
gradually diminish in size as L decreases. As
will be shown this is not the case and there is
actually an amplification of the uncertainty in
a region near the rough edge.

Because of the random nature of the surface,
this system is stochastic in nature and the
evaluation of the net heat transfer will involve
the solution of a partial differential equation
over a random region. In most of the reported
literature, the stochasticity is associated with
a property such as the thermal conductivity
or a boundary condition, usually the temper-
ature. The two problems, that of a random
roughness and that of a random boundary con-
dition, are fundamentally different and require
different approaches.
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There are very few reported results for ran-
dom regions. Lin et al. [1] solve the prob-
lem of a rough leading edge on a wedge in
supersonic flow by mapping the region. How-
ever, the mapping technique is valid only for
Neumann boundary conditions. References 2
and 3 suggest a method in which a coordi-
nate system is embedded in an elastic domain
whose shape is that of the mean region being
studied. The embedded coordinate system is
similar to that used for deterministic irregular
surfaces [4]. Forces are applied to the domain
and using the distorted coordinate system the
field equations are solved for the desired quan-
tity, temperature in our case. These forces are
determined by solving the inverse elasticity
problem, with the distorted grid being a natu-
ral consequence of the solution of the coupled
equations of elasticity. For each simulation,
solving for the temperature requires the eval-
uation of the conductance matrix based upon
the movement of the embedded nodal points.
This approach is both complex and computa-
tionally expensive and it is not clear that it is
less expensive than using the highly efficient
mesh generators available in commercial soft-
ware.

2. Representation of the Random Edge

The random edge is represented through the
Karhunen-Loeve expansion

ξ(y) =

∞
∑

i=1

√

λifi(y)ui (3a)

where ui are uncorrelated random variables
and λi and fi(y) are the eigenvalues and or-
thogonal eigenfunctions that satisfy

fi(y) =
1

λi

∫

C(y, y′)fi(y
′)dy′ (3b)

∫

fi(y)fj (y)dy = δij (3c)

where C(y, y′) is the covariance function and
δij is the Kronecker delta. Eq. (3a) defines
a realization of ξ(y) as the sum of the deter-
ministic functions fi(y), that are ordered in
terms of their eigenvalues, multiplied by mul-
tiple random variables, ui, and in our case are
taken as having a zero mean Gaussian distri-
bution. The series, Eq. 3a, is usually termi-
nated at N terms and the combined variance
of the first N vectors is given by

σ2(ξ) =

N
∑

i=1

λ2

i (4)

The number of such random variables, ui, needed
will depend upon the desired accuracy. For a
mesh with ∆y=1/140 over 0 ≤ y ≤ 1, the
number of vectors needed to achieve 99.9% of
the total variance is shown in Figure 4. Our
computed results did not show adequate con-
vergence unless more than 99.9% of the vari-
ance of the rough edge was accounted for.
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Figure 4 Number of Vectors, N , using Eq. 3a
needed to achieve 99.9% of the true variance
as a function of the correlation length L/H

(the number approaches infinity
as L → 0 (white noise))

The covariance function was

C(y, y′) = exp(−(y − y′)2/L2) (5)

and Eq. 3a was solved numerically. When
done on a finite grid, the K-L expansion is usu-
ally referred to as Principal Component Anal-
ysis [5].

The question of the appropriate mesh size is
difficult to determine. One suggestion is that
the correlation length L should span 2-3 el-
ements [6]. Experience solving deterministic
problems has also shown that reasonable re-
sults are found when using of the order of 3
elements per wave length. The eigenvectors
diminish in wave length as i increases and the
shortest wavelength was found to be of the or-
der of 1.5L for all values of L examined from
0.01H to 3H. This suggests that an adequate
mesh would be one in which ∆y ≈ 0.5L.



3. Solving the Problem

Realistically there are only a limited number
of techniques to solve the energy equation:

1 Direct simulation (Monte Carlo) which is
simple and straight foward, but computa-
tionally expensive

2 The Neumann approach in which the con-
ductance matrix is in the form K0(I +∆K)
and the inverse is an infinite series I−∆K+
(∆K)2 − (∆K)3....

3 Polynomial Chaos [7] in which both the
stochastic field and the solution are repre-
sented as a sum of orthogonal functions of
ui. Most published solutions have used only
a few terms in the series with each term a
function of only one or two of the ui. Pre-
liminary calculations indicate that several
terms are needed and that the functions be
of the form f(ui, uj, uk). As a consequence
the final set of equations to be solved in-
volves a very large number of coupled equa-
tions. Because of the high value of N , we
estimate that of the order of 5000 coupled
equations need to be solved.

4 Transformation of the coordinates such that

s(y) = x/W (y) 0 ≤ s(y) ≤ 1 (6a)

t = y/H 0 ≤ t ≤ 1 (6b)

In terms of s, t the problem is one of a con-
stant region and the two dimensional conduc-
tion equation

(

2(
W ′

W
)2 −

W ′′

W

)∂T

∂s
+ (

sW ′

W
)2

∂2T

∂s2

−2
sW ′

W

∂2T

∂s∂t
+

∂2T

∂t2
= 0(6c)

Although COMSOL can solve Eq. 6c, since
W (y) must be expressed by Eq. 3a, the deriva-
tives W ′ and W ′′ will involve N terms, each
of which will have a randomly selected coeffi-
cient, ui. In other words, a Monte Carlo sam-
pled set of pdes.

4. COMSOL and Monte Carlo Sampling

Monte Carlo simulation, while expensive, proved
to be the best approach. This was particularly
true because of the high efficiency of the mesh
generator and solver in COMSOL. Values of
ui were chosen using a Latin Hypercube based
upon dividing the cdf into 50 equal probability

increments. For each sample, a new mesh was
generated and the energy equation solved.

There proved to be an unusual problem caused
by COMSOL’s very efficient mesh generator.
Suppose that the rough edge was defined by
5 boundary segments and let them be num-
bered 1-5 with the top edge being 6, the right
edge 7, and the bottom edge 8. Clearly edges
6,7 and 8 have fixed thermal boundary condi-
tions, namely insulated, isothermal, and insu-
lated respectively. Unfortunately, as the coor-
dinates of the boundary points on the rough
edge change with each sample, the edge num-
ber that COMSOL assigns to the edges changes.
We spent quite a bit of time plumbing the se-
crets of the structure of ’fem’ before finding a
way to fix the edge numbers. We present the
algorithm to help other users.

Let Ney be the number of edges on the rough
edge and define the coordinates of the vertices
of the edges by

E X1=[Edge(1,1:Ney+1) 1 1];
E Y1=[Edge(2,1:Ney+1) 1 0];

Then in the script for COMSOL insert these
commands
% create bounding lines of the rough edge
CC(1)=curve2([E X1(1),E X1(2)],

[E Y1(1),E Y1(2)],[1,1]);
for Iedge=2:Ney+2
CC(Iedge)=curve2([E X1(Iedge),E X1(Iedge+1)],

[E Y1(Iedge),E Y1(Iedge+1)],[1,1]);
end
CC(Ney+3)=curve2([E X1(Ney+3),E X1(1)],

[E Y1(Ney+3),E Y1(1)],[1,1]);
[g1,ctx]=geomcoerce(’solid’,CC,’out’,’ctx’);
clear bnd
bnd.type = ’q0’,’T’,’T’;
bnd.T0 = 273.15,1,0;
afeX=[2*ones(1,Ney) 1 3 1];
afe.bnd=afeX;
for il=1:Ney+3
afeY(find(ctxil))=afeX(il);
end
bnd.ind=afeY;

The boundary conditions on edges 6,7 and 8
will be correct.



The problem was solved for a unit thermal
conductivity (all results presented are normal-
ized by the value of qx for a smooth edge)
and a roughness of 2% of the slab width, W .
The value of 2% was chosen as representing
a reasonable degree of roughness. Using a
Gaussian distribution truncated at ±4σ, the
maximum deviation is 0.08% of W , giving a
range of thermal resistance of a one dimen-
sional smooth slab from 0.92 to 1.08. Com-
putations were made with H = W, 3W and
5W . Little effect was found on the behavior
of qx(x) in the vicinity of y = H/2 and only
the case of H = W is reported. The number
of simulations to achieve a converged result
was a weak function of the correlation length
L, usually in the order of 1500 to 3500. This
number is a function of the number of ran-
dom variables, ui, i = 1, · · · , K. The values
of ui were found using the Latin Hypercube
approach [8].

5. Convergence of Computations

Figure 5a shows the convergence of the nu-
merical computations for the standard devia-
tion of the flux, σ(qx), at x=0.1W and y=0.5H
(similar results were found for other quanti-
ties of interest) for L/H=0.075 as a function
of the number of simulations for meshes us-
ing quadratic Lagrangian triangles and whose
number of nodes ranged from 1000 to 68000
with maximum element areas ranging from
10−2 to 10−4 and element areas near the rough
surface ranging from 10−4 to 2.5 10−6 respec-
tively.
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Figure 5a Convergence for L=0.075
For meshes with degrees of freedom

ranging from 1000 to 68000

The results are seen to converge to a steady
value after circa 3500 and to be insensitive to
the mesh used. The mean value of σ(qx) over
the range MC=3500 to 5000 changed by less
than 0.001 with a variation of ±0.0002 over
the different meshes.

The effect of the number of the number of
elements on the edge x = 0, 0 ≤ y ≤ H is
shown in Figure 5b. As suggested by the fig-
ure, all computations for L/H > 0.05 were
performed with 120 elements on the edge ex-
cept for L/H = 0.01 for which 140 were used.
Convergence was checked by monitoring the
value of σ(qx) at x = 0.1W and y = 0.5H .
Computations were carried out for 1300 iter-
ations and thereafter at ever 100 simulations
the mean value of σ(qx) and its standard de-
viation over the preceding 100 simulations ex-
amined. Convergence was achieved when the
mean changed by less than 0.001 and the stan-
dard deviation was less than 0.05%. Execu-
tion times are lisrted in Table 1.
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Figure 5b Effect of the Number of Edge
Elements on the value of σ(qx)

at x=0.1W and y=0.5H

Computations made using meshes that had
4000 dof and 2000 elements and ones that had
68000 dof and 25000 elements with minimum
element areas of 3 10−5 to 2.5 10−6 respec-
tively gave results that differed by less than
1%.



Table 1

Execution times on a 2.8 GHz cpu with 1GB of ram
for 1000 simulations: forming mesh 970 sec; solving 3900 sec,

extracting T, qx, qy; 2100 sec

L/W average number average number mesh quality
of dof of elements minimum average

0.01 13474 6614 .443 .988
0.10 13784 6777 .786 .989
1.0 14209 6990 .813 .986

The results presented in the following figures
were obtained using the next to finest mesh
(of the order of 14000 degrees of freedom, 7000
quadratic triangular elements with a minimum
area of approximately 8 10−5) and between
3200 and 3500 Monte Carlo simulation. Fig-
ure 6 shows the contours for qx and qy for an
edge roughness of 2%. Near the right edge, the
conduction is essentially one dimensional since
the flux in the y direction at all values of y
has approached zero and as a consequence the
standard deviation of the x flux approaches
from below the value obtained from Eq. 2
. Near the rough edge, there is a substantial
disruption of the heat flow with large values
of qythat are of the order of qx. Consequently,
the standard deviations of both fluxes are sig-
nificantly larger than that of the edge rough-
ness. In the central portion, 0.2H ≤ y ≤ 0.8H
the y flux is unconstrained, but near the
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for an Edge Roughness
of 2% and L=0.10W

insulated edges the flow lines of the flux are
forced to become aligned with the edge and
the result is that qx must vary more than it
does in the central region. Consequently, the
standard deviation near the insulated bound-
aries is of the order of 1.5 times that in the
central core. Figure 7 shows how quickly the
standard deviation of the heat fluxes drops
with distance into the slab

Figure 8 compares the standard deviations for
qx and qy at y=H/2. As expected, near the
rough edge, the fluxes behave similarly and
both approach the percentage standard devi-
ation of the roughness as L → 0. However,
σ(qy) → 0 as the isothermal right edge is
approached and the flux becomes one dimen-
sional. What is surprising is how the interac-
tion between qx and qy results in a standard
deviation at modest values of L of the order
of 7% or about 3 times the value expected for
large L.
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6. Correlation of the Heat Flux

The roughness of the contours of Figure 6 is
most apparent near the rough surface and di-
minishes as x approaches the right edge, x =
W . Both this roughness and the standard de-
viation, shown in Figure 7, are measures of
the effect of the correlation length L. As ex-
pected for small values of L the roughness of
the contours diminishes quickly and the flux
qx measured at the right edge is insensitive to
the correlation length. Figure 9 shows corre-
lation length of qx. (see the section entitled
”Correlation Length” for the definition of L.
In contrast to the effect of L on the standard
deviation of qx, the auto correlation length
monotonically increases and becomes greater
than W when L > 0.5H . The curve is only ap-
proximate because of the use of Monte Carlo

simulation. Repeated computations suggest a
range of uncertainty as indicated.
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Figure 9 Effect of L upon the Correlation
Length, L(y) of qx

7. Correlation Length

The correlation length, L is a measure of how
far apart yi and yj must be for a given de-
gree of correlation. L is not a physically mea-
surable quantity. Rather it is derived from
a model of the covariance. That is, the cor-
relation is expressed by an arbitrary function
C(yi, yj) that one feels fits the measured re-
sponse. Several functions are commonly used,
exp(−|d|/L, exp(−d2/L2), 1 − |d|/L, where
d = yi−yj . Clearly the value of L is dependent
on the model used and suffers from consider-
able ambiguity in its interpretation. For these
calculations, we used C(yi, yj)exp(−d2/L2) to
describe the random field ξ(y). As expected
for this linear problem, the computed covari-
ances at different values of x were found to be
well fit by this model.

8. Conclusions

From these results it appears that it will not
be useful to treat problems of this type by us-
ing the Neumann and the Polynomial Chaos
methods. The most interesting situations are
those for which the correlated nature of the
random field causes unexpected results, i.e.,
L ≤ 0.5W . For these values of L, ∆K is large
compared to I and the Neumann method does
not converge. The number of coupled equa-
tions needed for Polynomial Chaos is too large
for realistic computations.

Defining a characteristic depth of the region
directly affected by the rough edge to be the



the depth at which the percentage σ(q) equals
that of the roughness, see Figure 7, for all val-
ues of L is ≈ 0.1W . The results suggest that
the region in which the effects are significantly
greater than for L = ∞, as measured by the
standard deviation of both qx and qy, does not
exceed twice this characteristic depth. Fig-
ure 10 illustrates the relationship between the
penetration depth and L.
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Figure 10 Effect of L upon the
Penetration Depth

While the effect on qx at x = W can be es-
timated to range from 0 to σ(W ) as the cor-
relation length varies from 0 to ≈ 0.5W , the
effects internal to the slab are not easily an-
ticipated. Since a given slab has a unique
and fixed roughness, the statistical results are
to be interpreted as representing one’s uncer-
tainty about the variation of the heat flux.
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