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Introduction
Measurand

Excitation
 electrostatic
 piezoelectric

Detection
 capacitive
 piezoelectricMechanical 

Resonator thermoelectric
 optothermic
 magnetic

 piezoresistive
 optical
 magnetic

Resonator
Output 

Frequency

A

 Applications that do not allow for cabled solutions

 Applications in environments incompatible with active electronicspp p

 Mechanical resonator sensors are in principle suitable:
 The resonant approach is robust
 The resonant frequency does not depend on the detection technique
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 The resonant frequency does not depend on the detection technique 
adopted



Magnetic Films

Contactless Magnetic Excitation
Driven Currents

Time-Varying 
Magnetic Field BAC

Magnetic Films

DC or AC Magnetic 
Field

Driven Currents

Magnetic 
Film HolderForce

Force F
Driven Current 

IAC

HolderFilm

Proposed Approach

Incompliant with traditional 
microfabrication process

Holder

Unsuitable for contactless 
operation

Proposed Approach
 Contactless excitation of mechanical resonances in microstructures

 E l it ti f th i t ti b t t l DC AC ti fi ld Exploitation of the interaction between external DC or AC magnetic field 
with AC currents inductively coupled to the resonator

 No specific magnetic property is required
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 The resonators are required to be only electrical conductive



The excitation principle

Without static magnetic field
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 Ji(ωE): current density onto the resonator 
surface.

 BEr: radial component of the excitation
E

 BEr: radial component of the excitation 
magnetic field.
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 B : radial component of the excitation
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 B0r: radial component of the excitation 
magnetic field.



Simulation of the excitation principle
 Axial symmetry geometryVertical force  Axial symmetry geometry

 AC  Simulation

 Evaluation of

Rc

 Trend of the magnetic field

 Magnitude of the induced eddy current

 Magnitude of F component of force

LCoil

 Magnitude of  Fz component of force

hh

Rd

Resonator

 Coil radius Rc=2.5 mm

 Distance h=5 mm

 Maximum of the force for R =5 mm
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 Maximum of the force for Rd=5 mm
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 Maximum of the force for Rd=5 mm 0.E+00 5.E-03 1.E-02 2.E-02 2.E-02
Radius Rd (m)



Clamped-clamped resonator

Experimental results on miniaturized resonators
CANTILEVER
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A i l
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 Clamped-clamped titanium beam 
 Titanium parameters:E=105 x 109 Pa, ρ=4940 kg/m3, σ=7.407 x 105 S/m
 Dimensions: 17 mm x 1.4 mm x 100 μm 
 Excitation:  35 V (rms)/ 26 mA (rms)
 Excitation distance: 2 mm
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 Excitation distance: 2 mm
 Optical system for the frequency characterization of resonators 
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 Excitation distance: 2 mm
 Optical system for the frequency characterization of resonators 



Effects of the downscaling of the dimensions of the resonators

MEMS Design
Effects of the downscaling of the dimensions of the resonators
 Reduction of the total magnetic flux linked to the structures

 Decrease of the induced eddy-current density
 Decrease of the Lorentz force

 Increase of the mechanical stiffness

Section Area

Anchor Conductive path
Proposed solution: conductive path 
on the surface of the cantileverSection Area

of the coil  Connection with a collecting flux 
coil
 Multiple transversal paths for the

Cantilever

Collecting
flux coil

 Multiple transversal paths for the 
distribution of the circulating 
currents
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Cantilever



 Design of the conductive paths:

Simulation of MEMS devices

w  Design of the conductive paths:
 Choice of width wi and reciprocal 
distance dij

 Constraint of equal distribution of

wi

 Constraint of equal distribution of 
the circulating current in each path

dij

 Ehf
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 Design of the conductive paths:

Simulation of MEMS devices
 Design of the conductive paths:

 Choice of width wi and reciprocal 
distance dij

 Constraint of equal distribution ofN I(A)  Constraint of equal distribution of 
the circulating current in each path

 AC electrical simulation with unity 
current impressed

N I(A)
1 0.267
2 0.249
3 0.251
4 0 2334 p

 Computation of the current in the 
transversal paths

4 0.233
1 2 3 4

 Estimation of the resonant 
frequencies of the structures with the 
conductive paths
 Si l ti f 1500 700 15

 Ehf

 Simulation for a 1500 x 700 x 15 µm 
cantilever
 Value from the theoretical 
predictions: 9200 Hz
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


L
fris 2predictions: 9200 Hz

 Value from the simulation: 9404 Hz



Process of the CNM (Centro

Fabrication of MEMS devices

P l ili
(

Nacional de Microelectronica) of
Barcellona

Bulk-micromachining process
Crystal Silicon

Diffusion

Polysilicon

Metal 2

Via

Passivation

450 μm-thick N-doped BESOI
(Bond and Etch back Silicon on
Insulator) substrate with <100>

i t ti
Silicon

Buried Oxide

Crystal Silicon

Contact

Metal 1

Via

orientation
5 photolithographic masks (1

polysilicon, 2 metals)

 Die with 4 cantilever

 On-chip conductive paths

 On-chip collecting flux coil

 Half-bridge configuration of polysilicon 
piezoresistor
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piezoresistor



PSD
 Th t I i d th

Experimental results on MEMS resonators
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 Contactless Magnetic Excitation
 E it ti il C1 L 9 8 H
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 Excitation coil C1: L=9.8 mH
 Excitation current : 200 mA
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 Magnet: 1.4 T
 Distance C1-C2: 8 mm

Frequency (Hz)



Conclusions 

 Contactless excitation of miniaturized resonators by means of magnetic
fields has been proved

 The effects of the downscaling of the dimensions of the resonators on theg
excitation principle have been analyzed

 Dedicated solutions have been studied and applied to the design of
MEMS microresonators

 Contactless excitation of MEMS microresonators by means of magnetic
fields has been proved

 The principle can be adopted to excite contactless sensors operating on The principle can be adopted to excite contactless sensors operating on
short-range excitation distance of the order of 1 cm

 The experimental activity is investigating the possibility of extending the
principle to vibration readoutprinciple to vibration readout

 Contactless excitation and detection of vibrations in conductive
microstructures can be in general applied to measure a large variety of
physical quantities which can cause a predictable shift in the resonant
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physical quantities which can cause a predictable shift in the resonant
frequency of the structure




