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Introduction
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 Applications that do not allow for cabled solutions
 Applications in environments incompatible with active electronics

O Mechanical resonator sensors are in principle suitable:
O The resonant approach is robust

O The resonant frequency does not depend on the detection technique
adopted

|
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Contactless Magnetic Excitation

Magnetic Films Driven Currents

Time-Varying
Magnetic Field B
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Magnetic M

DC or AC Magnetic

Film Force  Holder
Incompliant with traditional Unsuitable for contactless
microfabrication process operation

Proposed Approach

L Contactless excitation of mechanical resonances in microstructures

O Exploitation of the interaction between external DC or AC magnetic field
with AC currents inductively coupled to the resonator

O No specific magnetic property is required

U The resonators are required to be only electrical conductive
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The excitation principle
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Without static magnetic field

|:z (t) = %‘]i (a)E)BEr [Sin(¢) +Sin@ ¢)]

4 J,(wg): current density onto the resonator
surface.

Q Bg,: radial component of the excitation
magnetic field.

Q ¢: Phase difference between the force F,
and the current Iz caused by the
impedence of the resonator surface.

With static magnetic field

|:z (t) — %Ji (a)E )[BEr Sin(¢) + BOr Sin@ ¢)]

4 B,,: radial component of the excitation
magnetic field.
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Simulation of the excitation principle
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Simulation of the excitation principle
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Experimental results on miniaturized resonators

Clamped-clamped resonator canTiLEvER
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O Clamped-clamped titanium beam

A Titanium parameters:E=105 x 10° Pa, p=4940 kg/m3, 0=7.407 x 10°S/m
d Dimensions: 17 mm x 1.4 mm x 100 ym

O Excitation: 35V (rms)/ 26 mA (rms)

O Excitation distance: 2 mm

[ Optical system for the frequency characterization of resonators
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Experimental results on miniaturized resonators

Clamped-clamped resonator
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O Clamped-clamped titanium beam

A Titanium parameters:E=105 x 10° Pa, p=4940 kg/m3, 0=7.407 x 10°S/m
d Dimensions: 17 mm x 1.4 mm x 100 ym

O Excitation: 35V (rms)/ 26 mA (rms)

O Excitation distance: 2 mm

[ Optical system for the frequency characterization of resonators
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MEMS Design

Effects of the downscaling of the dimensions of the resonators
O Reduction of the total magnetic flux linked to the structures
U Decrease of the induced eddy-current density
O Decrease of the Lorentz force
O Increase of the mechanical stiffness

Anchor

Condyctive path : i
P Proposed solution: conductive path

Section Area 9N the surface of the cantilever

of the coil 0 Connection with a collecting flux
coll
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Simulation of MEMS devices

Wi 1 Design of the conductive paths:
e 4 Choice of width w; and reciprocal
- distance d;
O Constraint of equal distribution of
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Simulation of MEMS devices

1 Design of the conductive paths:
4 Choice of width w; and reciprocal

distance d;
N | I(A) O Constraint of equal distribution of
1 | 0.267 the circulating current in each path
2%~ DO AC electrical simulation with unity

~o=2 | Current impressed

U.£O9O

O Computation of the current in the
transversal paths

O Estimation of the resonant
frequencies of the structures with the
conductive paths

O Simulation for a 1500 x 700 x 15 pm
cantilever

O Value from the theoretical
predictions: 9200 Hz

O Value from the simulation: 9404 Hz
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Fabrication of MEMS devices

Polysilicon
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d Die with 4 cantilever
O On-chip conductive paths

O On-chip collecting flux coill

O Half-bridge configuration of polysilicon

piezoresistor

U Process of the CNM (Centro
Nacional de Microelectronica) of
Metal 2 Barcellona
U Bulk-micromachining process
450 pm-thick N-doped BESOI
Metal 1 (Bond and Etch back Silicon on
Insulator) substrate with <100>
orientation
5 photolithographic masks (1
polysilicon, 2 metals)

Passivation

Via

Contact
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Experimental results on MEMS resonators
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Experimental results on MEMS resonators

PSD

Laser d The current I, induces the
B current |
r ' Amplitude Vibration

O Interaction of | with B,
oporing—= LOrentz force F,
%= 0 Optical system

Cantilever
beam

nnnnn

Excitation
signal Cl
40
Single turn 55_00 50
on-chip coil Py S
] ] ] g 4.00 100 %
4 Contactless Magnetic Excitation S 2.00 £
] . . g - 1 -150
O Excitation coil C1: L=9.8 mH = 200
. . -4 -200
O Excitation current : 200 mA 100 |
. . — 0.00 . ! ! ! : -250
D COIl C2 L_53 mH 7800 8000 8200 8400 8600 8800 9000
d Magnet: 1.4 T Frequency (H2)

O Distance C1-C2: 8 mm
|
Comsol Conference 2009, October 14-16, 2009, Milan, Italy 14/11




Q

Q

d

Conclusions

Contactless excitation of miniaturized resonators by means of magnetic
fields has been proved

The effects of the downscaling of the dimensions of the resonators on the
excitation principle have been analyzed

Dedicated solutions have been studied and applied to the design of
MEMS microresonators

Contactless excitation of MEMS microresonators by means of magnetic
fields has been proved

The principle can be adopted to excite contactless sensors operating on
short-range excitation distance of the order of 1 cm

The experimental activity is investigating the possibility of extending the
principle to vibration readout

Contactless excitation and detection of  vibrations Iin conductive
microstructures can be in general applied to measure a large variety of
physical quantities which can cause a predictable shift in the resonant
frequency of the structure
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