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Abstract: Strained wrinkled and flat 
nanomembranes have different bending 
properties when they are released from the 
underlying substrate. This is caused by increased 
bending rigidity of the wrinkled film in one 
direction. We provide theoretical and numerical 
analysis of the directional rolling of wrinkled 
films, which is important for positioning rolled-
up tubes on the short mesa edge during 
fabrication. 
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1. Introduction 
 

Wrinkled (corrugated) paper in a cardboard 
structure is a famous example of using 
corrugations to increase bending resistance of 
product packages to mechanical damage. 
Transferring this knowledge to nanotechnology 
leads to practical advantages for fabrication of 
nanostructures. In this work, we apply a similar 
principle based on wrinkling of nanomembranes 
to control the rolling process of rolled-up micro- 
or nanotubes. 

Increasing interest in applications of rolled-
up nanomembranes or films [1-4] requires 
precise techniques to position them on a 
substrate surface. Usually, pre-strained 
rectangular flat films on lithographically defined 
mesas are partially released by etching the 
underneath sacrificial layer from all sides. A 
large strain gradient causes the films to bend and 
roll up into tubular structures. Usually, the 
rolled-up tubes form along the long edges only, 
see Fig. 1(a). In this work, we show that 
releasing an initially wrinkled film on a mesa can 
suppress the formation of tubes at the long 
(wrinkled) edges and instead cause the roll-up of 
the film along the short (flat) edges, Fig. 1(b).  

 
2. Theory  
 
We consider an elastic strained film of thickness 
t and dimensions xL  and yL , where y xL L< . 

Linear isotropic elastic properties with Young’s 
modulus E  and Poisson’s ratio ν  are assumed 
for this film. The cartesian coordinate system 
( ), ,x y z  is defined with the origin at the middle 
plane of flat (wrinkled) film and with the 
orientation of axes given in Fig. 1(a). In the 
following, we show the analytical expressions 
for elastic and bending properties of the 
considered flat and wrinkled film. 
 
2.1 Flat film 
 

First, we consider a flat film, which is 
initially biaxially strained with 
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where 0 ( ) ( / )z t zε ε ε= + Δ  and ε , εΔ  are 
average strain and strain gradient in the film, 
respectively. Since the film is thin, normal z-
stress through the thickness is zero and eq. (2) 
 

 
 
Figure 1. (a) Initially, a flat film rolls up into tubes at 
the long edges after partial release from the substrate. 
In contrast, (b) a wrinkled film relaxes into tubes at 
short edges after partial release. Actual film portions 
A, B, and C taken for our simulations are denoted as 
dashed regions and they have the same dimensions 
(h×g).  
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follows from Hooke’s law. All shear strains are 
zero. The initial strain considered here can be 
caused by epitaxial mismatch strain, different 
thermal expansion of substrate material and the 
film, and other thin film fabrication conditions. 
In experiment, when the sacrificial layer is 
etched away below the film from all sides, the 
strained film becomes free-standing and it can 
relax the initial strain by bending into tubular 
structure, see Fig. 1(a), with radius of curvature 
for bending in both x and y directions given by  
[5] 
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where 3 2/(12(1 ))D Et ν= −  is the flexural 
rigidity of the film and 2 /(12(1 ))M E tε ν= Δ −  is 
the bending moment per unit length caused by 
the strain gradient through the film thickness. 
This result can be alternatively obtained also by 
minimizing the elastic energy of the film with 
tubular shape assumption [4]. In the experiment, 
the tube actually forms on the long edge only, 
because rolling up of the film on the long edge 
relaxes more elastic energy of the initial strained 
film. 
 
2.2. Wrinkled film 

 
For the wrinkled film, we assumed the same 

elastic constants of this film as the flat film 
considered in the former subsection, Fig. 1(b). 
The wrinkle shape is given by deflection along x-
direction: ( , ) sin(2 )x y A xζ π λ= , where A  and 
λ  are the amplitude of the wrinkle and its 
wavelength. The initials strain are given by 
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for 0 ( , , ) ( / )( ( , ))w x y z t z x yε ε ε ζ= + Δ −  given 
linearly from the middle plane of the wrinkled 
film. The wrinkled (corrugated) film has 
obviously different elastic and bending 
properties in two perpendicular directions (x and 
y directions). Therefore, classical work on 
anisotropic plates [6-7] uses an equivalent 

orthotropic flat plate to account for different 
elastic and bending properties of wrinkled film 
in these 2 directions. The Hooke’s law for 
orthotropic plate is written as 
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For sinusoidal wrinkles with small aspect ratio 
A λ , the expressions for Young’s moduli 

,x yE E  and Poisson ratios ,xy yxν ν  are [8] 
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The wrinkled film is softer in x direction than the 
flat film, as intuitively expected. For bending 
(flexural) rigidity, we have 
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The effect of enlarged bending rigidity on 
bending radius leads to 
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where 2 /(12(1 ))y y yxM E tε ν= Δ −  is the bending 
moment in y direction [9]. The bending radius 
for bending from long edge (in y direction) is 
also larger than for bending from short edge (in x 
direction). For comparison with the result 
obtained from the finite element simulations, we 
compared the film curvature along y-direction 

1y yRκ = . 
 
3. Method  
 

For simplicity, we compare only the elastic 
relaxation of released flat and wrinkled film 
stripe portions as indicated by the dashed regions 
in Fig. 1. One edge (long or short) is fixed to the 
sacrificial layer, lateral edges of stripes A and B 



are connected by periodic boundary condition for 
displacement, and all other boundaries are free. 
We use COMSOL Multiphysics version 3.5a 
with Structural Mechanics Module (solid, stress-
strain) in three dimensions with large 
deformation for this work, where the Green’s 
strain is given by [10] 
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where uα  is  the displacement of the point in the 
film and , , , ,x y zα β γ = . The first term is initial 
strain, the second term is a usual linear strain and 
the last term is caused by large deformations. 
Solution of equations of mechanical equilibrium 
gives the shape of film which best relaxes the 
initial strains. Large initial strains ( 310−≈ ) and 
large deformations make the problem highly 
nonlinear and we have to solve it with parametric 
solver by incremental increase of initial strains in 
small steps. The solution for smaller parameter 
value is used as initial guess for next parameter 
step to ease the solution convergence. 

The geometry of flat film model is set up 
with initial strains described in section 2.1. The 
simulation of the wrinkled film relaxation 
consists of two parts. First, the flat film is 
deformed to the wrinkled state by imposing a 
sinusoidal displacement of amplitude A and 
wavelength λ on the bottom face and attaching  
 

the Deformed Mesh (ALE) Module to the film 
domain. Second, the wrinkled geometry iscreated 
from the deformed mesh and the model is set up 
with initial strains from section 2.2 (Eqs. (4) and 
(5)).  
 
4. Simulation parameters 

 
The film represents an experimental 

Molybdenum sample with a thickness of 
50 nmt = , Young’s modulus of 330 GPaE =  

and Poisson’s ratio 0.3ν = . The strain gradient 
is extracted approximately from scanning 
electron microscope (SEM) images, where the 
radius of tubes was measured as 8 mR μ= . 
According to eq. (3) this gives 0.5%εΔ = . We 
take the average strain 0.25%ε = −  to give zero 
initial at the middle plane of the film. The 
dimension of simulated stripe portion is given by 
etching depth 6 mh μ=  to give approximately 
1/8 of tube full rotation and by one period of the 
wrinkled film, 10 mg λ μ= = .  

Since the film is very thin ( 0.005t g = ), 
we could not use the default free tetragonal 
mesh, but we had to scale it in z direction to 
obtain reasonable number of mesh elements. For 
the presented results, we used ‘Coarser’ free 
mesh with scaling by 2 in z. The number of 
tetrahedral elements is ~3000, minimum element 
quality is ~0.09 and the number of degrees of 
freedom is ~56000. 
 
 

 

 
Figure 2.  Relaxation of film portion fixed on long edge. (a) Initially flat film forms a tubular structure, whereas (b) 
initially wrinkled film ( 200 nmA = ) shows no signs of tube structure. 



5. Results 
 

We study the deformation of the flat and 
wrinkled film portions towards bending and tube 
formation. The portion of the flat film at the long 
edge (denoted A in Fig. 1) forms into a tubular 
structure with an average radius 8.0 μmR =  (see 
Fig. 2(a)), which agrees well with the 
experimental value mentioned above. In contrast, 
the wrinkled film portion (denoted B in Fig. 1) 
deforms into a wrinkled configuration similar to 
the initial wrinkled film (see Fig. 2(b)), refusing 
to form a tube at the long edge.  

For comparison with eq. (9), we extract the 
average curvature of radius in y direction yκ  
over the film area as function of wrinkle 
amplitude A on Fig. 3. For flat film ( 0A = nm), 
both values overlap giving the reciprocal value 
of 11/ 0.13 my Rκ μ −= ≈ . Qualitatively, 
curvature yκ  from the finite element calculations 
and theory both rapidly decrease for increasing 
A, which means that the stripe stays nearly flat 
and does not bend to tubular structure. For the 
presented geometry and parameters, we have 
found that the minimum wrinkle amplitude 
needed to suppress the bending to tube structure 
is as little as 3 nm. 

By releasing the wrinkled film at the short 
edge of mesa as shown in Fig. 4 (denoted as C in 
Fig. 1), the tube can form conveniently as in the 
 

 
 
Figure 3. Comparison of stripe average curvature yκ  
for rolling from wrinkled edge, extracted from finite 
element simulation (blue) and predicted by classical 
theory of eq. (9), green. Values from the simulations 
are shown with error bars giving standard deviation of 
curvature over the film area. 

 

 
 

Figure 4. Relaxation of wrinkled film ( 200 nmA = ) 
fixed on the short edge leads to rolled-up tube 
structure. 
 
case of flat film with radius 8.0 μmR = . There 
is no hindrance of bending on this edge, because 
the structure of both the bent tube and the 
original wrinkle is uniform in y direction. 

As a result, when the wrinkled film is 
released from all four sides simultaneously, as 
schematically shown in Fig. 1(b), the tubes form 
at the short edges since bending into tubes is 
suppressed at the long edge.  
 
7. Conclusions 
 

We have shown that by introducing wrinkles 
to the initially strained film, the rolling direction 
can be controlled. Typical rolling along the long 
edge of the mesa can be suppressed by the 
wrinkle structure. Therefore, predefinition of the 
rolled-up tube position prior to the release of 
strained layer is feasible by this concept. We 
believe that the experimental realization of this 
idea is feasible in the near future. 
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