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The REET Unit at FBK
REET: Renewable Energies and Environmental Technologies

Topics:

• Solar thermal energy
• Non ionizing radiations• Non ionizing radiations
• Biomass
• Geothermal energy

+

Applied research
in collaboration with

Methods:

• Experimental activity
• Numerical simulations

local companies • Partner collaborations



Heat Exchange Applications

Crucial aspects:

• Vector fluid
• Piping system
• Heat source
• Flow regimeg

In general: non-isothermal flow

Here: fluid dynamics independentHere: fluid dynamics independent
of heat transfer

Water, small temperature variation
 Purely incompressible flow Purely incompressible flow Water

inflow
Heat

source



Flow in Curved Pipes

Flow in curved circular pipes: Dean (1927)

S ll l it  (l i  i ) D  b• Small velocity (laminar regime)
• Negligible torsion
• Small curvature (δ « 1)

Dean number

ReDe 

Ra /
a Investigations found in literature:

R

• Cross section (circle, square, …)
• Pipe path (torus, helix, …)
• Regime (laminar, turbulent, …)



Flow in Curved Pipes

Pipe curvature gives rise to secondary flow (flow 
perpendicular to the main flow direction).

Typical flow pattern at small Dean numbers:

• Main flow: slightly modified with respect to straight 
tubes due to centrifugal force
• Secondary flow: recirculation structures (Dean flow)

Centrifugal force

Enhanced heat 
transfer efficiency 
due to transverse 
convective fluxconvective flux



Helical Coil Flow

Helical channel with non trivial cross section
Large number of turns  infinite coil approximationLarge number of turns  infinite coil approximation

Translational invariance with respect to curvilinear 
coordinates (Frenet frame)
 ibl  di i l d ti  (3D  2D) possible dimensional reduction (3D  2D)

Here: 3D finite geometry with periodic-like boundary 
conditions

Helical path: non negligible role of torsion
Put in evidence by comparison with toroidal path 



Frenet Frame
mm mm

m
• t, tangent unit vector: 
tangent to curvilinear path

• n, normal unit vector: 
pointing towards curvature 
radius

t
b m

radius

• b, binormal unit vector: 
constant in the absence of 
torsion ntorsion



Helical Path
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Channel Cross Section

Re hDv


Cross section in the plane 
orthogonal to the tangent 
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Model Implementation

Navier-Stokes equations, incompressible fluid (water).

Solver  PARDISO  highly non-linear problem  manual Solver. PARDISO, highly non-linear problem, manual 
tuning of damping parameters.

Mesh, element order. Unstructured tetrahedral mesh 
l t  t i  h l t  L  P Pelements, swept prism mesh elements, Lagrange – P2P1

or Lagrange – P3P2.

Artificial diffusion: crosswind diffusion (0.1), isotropic 
diffusion occasionally used for intermediate simulations.

Boundary conditions. Walls: no slip b.c.’s. Inlet and 
outlet: no viscous stress + periodic b.c.’s + pressure at outlet: no viscous stress + periodic b.c.s + pressure at 
a point.



Torus

Symmetry: half cross section
Arc-length: 10°
Meshes: 9x10, 16x18Meshes: 9x10, 16x18
Element order: P2P1
Re = 220, De = 90, Dp = 40 Pa / 360°
B.c.’s:



Torus

/ /Dp = 40 Pa / 360°, De = 90 Dp = 160 Pa / 360°, De = 276

Dp = 280 Pa / 360°, De = 419 Dp = 400 Pa / 360°, De = 543



Torus
Check symmetry: full cross section
Check curvature: 90° arc
Meshes: 4x5 (half section)
El t d  P PElement order: P3P2
Re = 220, De = 90, Dp = 40 Pa / 360°

Good agreement with 10° half section 
geometry for similar dof density



Helix

Arc-length: 10°
Mesh: 10x12 (half section)
Element order: P3P2Element order: P3P2
Re = 453, De = 181, Dp = 100 Pa / 360°
B.c.’s:

No symmetry  additional Dean structureNo symmetry, additional Dean structure



Helix

Arc-length: 360°
Mesh: swept, prism elements
Element order: P2P12 1
Dp = 100, …, 1000 Pa / 360°

Basically linear velocity - pressure 
relation, laminar regime (similar 
results are obtained for the toroidal results are obtained for the toroidal 
geometry)



Conclusions

Periodic boundary conditions:
Convergence issues with rispect to standard inlet-outlet b.c.’s

Mesh requirements:
• Identical meshes for coupled boundaries
• High quality elements (in particular close to periodic boundaries) 
 unstructured meshes and higher order elements

Successful observation of non trivial secondary flow structures with 
full 3D Navier-Stokes simulationsfull 3D Navier Stokes simulations





Torus

Toroidal path:
velocity-pressure relation, 
laminar regime



Technical Info

Machine. Processor: double quad-core, 2GHz. RAM: 16 GB.

Number of degrees of freedom.
Helix:
• 10° geometry: 360000 dof

i l  t  t  250000 d f• single turn geometry: 250000 dof
Torus:
• 10° half section geometry: 42000 dof (9x10), 240000 dof (16x18)
• 90° full section geometry: 220000 dof




