

Using COMSOL Multiphysics for Biomechanical Analysis of Stent Technology in Cerebral Aneurysms

Presentation by Joachim Rasmussen

DTU Electrical Engineering

Department of Electrical Engineering

Welcome

- Introduction
- Simulation setup and results
- Conclusion

Aneurysms

- Focal dilation of the arterial wall
- Saccular aneurysm most common in cerebral vasculature - 90% Berry Aneurysm
- Up to 30mm in diameter
- Silent until rupture

Source: MUSChealth

Treatment techniques – Stent assisted coiling

Source: MUSChealth

Treatment techniques – Stenting?

Source: COOK

- Introduction
- Simulation setup and results
- Conclusion

The cerebral vasculature

Source: Sobotta

ACA & ACoA model

- Section of Anterior Cerebral Artery with or without ACoA branch
- 3D FSI simulations
- Neo-Hookean hyperelastic vessel wall
- Mooney-Rivlin hyperelastic aneurysmal wall
- Newtonian fluid
- Laminar inlet flow
- Constant outlet pressure

Stent simulation

Porosity simulation

Source: COOK

Stent porosity simulation

Chemical Engineering Module – Porous Media Flow – Brinkman Equation

2 adjudstable parameters:

Porosity, ${m \epsilon}$

Hydraulic permeability, K

$$\varepsilon = \frac{V_{void}}{V_{total}}$$

$$K = \frac{c \varepsilon^3}{\mu s^2}$$

ACA stent porosity simulation

- •Section of Anterior Cerebral Artery
- •3D simulation
- Newtonian fluid
- Laminar inlet flow
- Constant outlet pressure

ACoA stent porosity simulation

Stent simulation

Strut setup simulation

Source: COOK

ACA stent strut simulation

- •Section of Anterior Cerebral Artery
- 2D model
- Non-Newtonian fluid
- Laminar inlet flow
- •Constant outlet pressure

ACA stent strut simulation

- Shape
- Strut size
- Mesh size

ACoA stent strut simulation

ACoA stent strut simulation

ACA stent strut simulation

ACA stent strut simulation

- Introduction
- Simulation setup and results
- Conclusion

Conclusion

- Possible to reduce aneurismal blood flow using stents
- Small pore/mesh design
- Stent efficiency highly dependent on strut design
- Drain sections for arterial branches

Conclusion - Future Work

- Fung-type non-linear materials
- 3D strut models
- CAD drawings
- Blood velocity measurements
- Thrombosis trigger
- Patient specific models

Thank you!

Sources

- ASITN The American Society of Interventional and Therapeutic Neuroradiology (ASITN). Brain aneurysms and aneurysms information, May 2009. http://www.brainaneurysm.com/index.html
- COOK COOK Medical. Cook medical peripheral intervention zilver 635®, May 2009. http://www.cookmedical.com/di/dataSheet.do?id=4337
- MUSChealth Medical University of South Carolina. Neurointerventional surgery brain aneurysm, May 2009. http://www.muschealth.com/neurointerventional/brainaneurysm.htm
- Sobotta J. Sobotta. Sobotta Anatomie des Menschen, Der komplette Atlas in einem Band. Urban & Fischer, 22nd edition, 2007
- Thubrikar M. J. Thubrikar. Vascular Mechanics and Pathology. Springer, 2007

All material has been reprinted with permission