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Abstract: In this work, we demonstrate the 

implementation of the micromagnetic equations 

for the description of ferromagnetic thin films in 

COMSOL Multiphysics. We apply our model to 

magnetoresistive sensors consisting of several 

soft ferromagnetic layers and their response to 

magnetic particles. The magnetization dynamic 

of the particles needs to be described in a similar 

manner, though due to size effects it is possible 

to reduce the description to a set of ordinary 

differential equations. The signal will be 

discussed in respect to the particle position as 

well as the influence of antiferromagnetic 

ordering in particle clusters that are within 

detection range. 
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1. Introduction 
 

Magnetic particles have gained a lot of 

interest in lab-on-a-chip applications during the 

last decades.
1,2

 Their magnetic moment enables 

their manipulation
3,4

 by external magnetic fields 

and due to their stray field they themselves 

influence magnetic material close to them. The 

latter effect can be exploited for the detection of 

particles by magnetoresistive sensors,
5
 which 

consist (in the simplest setting) of two 

ferromagnetic electrodes separated by a non-

magnetic (insulating or conducting) spacer layer. 

The resistance of this layer stack varies 

depending on the relation between the 

orientation of the magnetization distribution in 

each of the layers. Generally, a parallel 

alignment leads to a small, an antiparallel state to 

a high resistance. A proper understanding of the 

measured resistance change requires detailed 

knowledge of the underlying dynamics. In this 

work, we will analyze the situation of small 

elliptically shaped sensors for the detection and 

position determination of magnetic particles. The 

results presented should help to guide the design 

of new sensor layouts for different detection 

applications. 

 

2. Governing equations 
 

A magnetic volume of magnetization M 

creates a magnetic field H that can be expressed 

by a scalar potential φ in the form φ= −∇H  if 

no external current densities can be found in the 

system. The potential φ can be calculated solving 

the Maxwell equations, leading to 
 

 φ∆ = ∇M  .        (1) 

 

The norm of M, the saturation magnetization MS, 

is a constant depending on the magnetic material 

considered. Further, we will denote by m̂  the 

normalized direction vector of M. The dynamic 

behaviour of ferromagnetic material is described 

by the empirical Landau-Lifshitz-Gilbert (LLG) 

equation 
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with the phenomenological damping coefficient 

α and the gyromagnetic ratio γ. The effective 

magnetic field Heff decomposes into different 

contributions: 
 

 
2 ani

eff
0 S

( )
ˆ2 ( )

ˆ
ˆ

A f

M

δ
µ δ

= +∇
m

H m
m

 

   
demag ex++H H      (3) 

 

The first summand originates from the exchange 

energy which favors parallel alignment or more 

exactly small curvature of each component im̂ . 

The material depending exchange constant A is a 

measure for the “stiffness” of the magnetic 

distribution. The higher the value the less 

magnetic domains can be found. The second is 

attributed to magnetocrystalline anisotropy with 

the anisotropy constant K. Several axes within 

the material can be energetically preferred due to 

the microscopic atomic structure. The form of 

the energy functional fani depends on the type of 

anisotropy. The demagnetization field Hdemag is 

the magnetic field along the magnetic layer that 

is created by the layer itself. We will obtain this 

contribution as a solution of equation (1). It 

should be pointed out that this term is of non-
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local nature; its value depends on the magnetic 

field in the whole space. Therefore its calculation 

requires modeling the area around the magnetic 

material as well. Finally, all remaining field 

contributions for instance particle stray fields are 

summed up in the external field Hext. 

Magnetic layers interact by their stray field. 

However, other coupling effects need to be 

considered depending on the type of the non-

magnetic spacer layer. If a conducting layer is 

analyzed the so called RKKY-coupling is the 

main contribution. Its strength as well as its sign 

oscillates in respect to the thickness d of the non-

magnetic separation layer. Phenomenologically, 

it can be described by 
 

2

RKKY 1 21 2 1 2
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with constants J1 and J2 depending on d. 

However, in this work we will restrict our 

analysis to insulating tunneling barriers. In this 

case the coupling is due to a correlated surface 

roughness, the so called Néel-coupling. 

Assuming a sinusoidal structure of period length 

λ, a height h and an insulator thickness d the 

coupling energy is given by 
 

2

SNéel 1 2
ˆ ˆ,MJ = 〈 〉m m  

 
2 2

0 2 2
exp

2

h dµ π π
λλ

 
 
 

⋅ − .        (4.2) 

 

Néel-coupling favors parallel alignment opposite 

to stray field coupling. Which effect dominates 

depends on the size of the sensor. For sensor 

sizes larger than 1 µm
2
 Néel-coupling becomes 

important, for smaller ones the stray field is the 

dominant effect.  

Transport through the insulating barrier 

occurs due to tunneling electrons; the tunneling 

current varies with external fields applied. This 

effect was first observed by M. Julière in 1975 in 

Fe/GeO/Co-junctions. The resistance change due 

to an external magnetic field, the tunneling 

magnetoresistance (TMR) ratio, can be 

calculated according to the formula
6
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denoting the sensor area by Alayer. 

The description of magnetic particles 

depends on their size. Particles of a diameter ~ 

100 nm are single domain particles; they can be 

approximated by a homogeneously magnetized 

sphere of magnetic moment mpart. Thus, their 

stray field Hstray at a point ˆr=r r  is given by the 

dipolar formula 
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where ,〈 ⋅ ⋅〉  denotes the Euclidean inner product. 

If several particles are interacting, their dynamics 

need to be described in a similar manner to (1). 

However, since no domain structure is expected, 

the magnetic moment distribution is constant on 

the particle volume. Therefore, the first 

summand in (2) is zero, exchange contributions 

can be omitted. The resulting equation does not 

depend on space any longer and (1) reduces to a 

set of ordinary differential equations. Assuming 

an N-particle problem, the dynamic equations 

can be written in the form 
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with the blockdiagonal matrix M  
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where  
n ijk n, j

m̂ε=M , n = 1, … , N, and the 

vectors 
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Equations (1) and (2) together with the 

additional energy term (4.2) have been 

implemented via weak form modeling. The 

ODE-system (7) was integrated as additional 

ODEs. The model setup is done by a COMSOL 

plug-in (see Appendix). 



 
 
FIG. 1: Examples for the behaviour of magnetic single domain nanoparticles. Subplot (a) shows the dynamics of two 

20 nm particles with of a distance of 25 nm, a saturation magnetization MS = 1000 kA/m and a damping coefficient α = 

10-2. The lines on the sphere give the trajectories of each magnetic moment vector, the plot the magnetization 

dynamics. (b) presents the equilibrium of a 10 × 10-particle lattice. The particle state shows an antiferromagnetic 

configuration which is obtained for Hext = 0, the graph shows its hysteresis behaviour for different field directions. 

 

 

3. Examples for the isolated systems 
 

To get a better impression of the behaviour of 

each part of the combined system, we will 

discuss two examples for the single components. 

 

3.1 Two dimensional particle arrays 

 

The dynamics of interacting dipoles occur on 

a nanosecond timescale. Fig. 1(a) shows the 

typical behaviour of two single domain particles 

for a damping constant α = 0.01, which is a 

common assumption and also a reasonable value 

for real magnetic materials. The magnetization 

orientations oscillate strongly until a parallel 

alignment is achieved.  

Self assembled systems of nanoparticles have 

been thoroughly studied during the last years.
 

Here, we will give an example of their complex 

magnetization reversal due to dipole-dipole 

interactions. In the equilibrium state of the two 

dimensional cubic 10×10-lattice shown in Fig. 

1(b) with no external field, magnetic moments 

align in an antiferromagnetic manner, leading to 

a very small stray field. Though they do not form 

magnetic domains, they still show a hysteretic 

behaviour as shown in the subplot of Fig. 1(b). 

However, the calculated magnetization curves 

differ from those obtained for ferromagnetic 

materials: close to H = 0 the antiferromagnetic 

ordering is stable against small perturbations, 

thus, the magnetic susceptibility 
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is very small as seen in Fig. 1. The hysteretic 

behaviour strongly depends on the direction of 

the applied magnetic field. If the external field 

overcomes the inter particle coupling several 

features like sudden jumps can be found.
7 

 

 

3.2 A micromagnetic trilayer 

 

As an example for the dynamics of magnetic 

layers, we calculate the behavior of a trilayer 

system (Fig. 2). Three magnetic 100 nm × 100 

nm square layers with a thickness of 10 nm each 

are spatially separated by insulators of also a 

thickness of 10 nm. We assume the top layer to 

have a very low exchange constant of A = 10
-12

 

J/m, whereas for the centre and the bottom layer 

we choose A = 10
-11

 J/m. As an initial condition, 

we set the magnetization configuration parallel to 

the x-axis in all three ferromagnetic layers. 

As the system evolves, different behaviour 

can be observed: the top electrode forms a so 

called vortex state, thus, minimizing the energy 

of its magnetic stray field. Due to their exchange 

contribution, similar configurations are not 

possible for the lower layers; they form so called 

S- and C-states. It may be pointed out that for 

small geometries as discussed here stray field 

coupling between layers is a major contribution. 

This can be seen in Fig. 2: magnetic streamlines 



 
 
FIG. 2: Dynamic magnetization behaviour of a magnetic trilayer system. Starting from the initial state mx = 1 for all 

layers, the system evolution is shown on the right side. Since different material parameters are used each layer reaches 

a different end state: the soft magnetic top electrode creates a vortex state which is not possible for the hard magnetic 

bottom layers; they form S-states (centre) and C-states (bottom) instead. The behaviour of the external magnetic field is 

shown on the left side (grey lines); the final configuration leads to an almost vanishing layer stray field. 
 

 
run between neighboring layers, minimizing the 

total stray field energy. 

 

4. Combined system 
 

The actual setup of the combined system 

depends on the measuring task. Here we want to 

focus on two different objectives: (a) detection 

that determines the position of a single magnetic 

particle and (b) detection that measures the 

number of particles on top of the multilayer 

system. The setup discussed is schematically 

shown in Fig. 3: the sensor consists of two 4 nm-

CoFeB-layers separated by a tunneling barrier of 

2 nm. Its shape is elliptic with axis lengths of 

400 and 100 nm. We do not want to focus on the 

reason for this specific shape choice, for more 

information see ref.
5
 The material parameter 

chosen are MS = 1194 kA/m and A = 2.86 ⋅ 10
-11

 

J/m which are the material parameters for 

CoFeB. It should be pointed out that the 

dynamics of the magnetic layers are not 

important for the measuring tasks described; 

instead a stationar solution would be sufficient. 

However, stationary system solvers usually do 

not converge as long as the initial guess is not 

close to the end state. To obtain a good initial 

guess a combination of solvers should be used: 

(a) calculate a number of time steps with a 

transient solver and (b) use this for the initial 

guess to obtain a stationar solution. This strategy 

usually succeeds, the number of time steps 

though differ in respect to the regarded system, 

but may be estimated by the material parameters 

and the geometry dimensions. 

 

 

 
 
FIG. 3: (a) Schematic of the sensor layout, two soft 

magnetic layers are separated by an insulator. (b) and 

(c) show the in-plane components of a magnetic 

particle aligned in z- and in x-direction, respectively. 

The magnetization behaviour is shown in (d).  



 
 

FIG. 4: Cut of the ∆TMR-maps calculated at the grid points according to (8) for (a) different external field values and 

(b) particles at different heights. The grey level indicate the plain ∆TMR = 0. Particle saturation is chosen according to 

Fig. 3(d). 

 

 

4.1 Single particle detection 

 

Magnetic particles close to the soft magnetic 

top layer exert a torque to the magnetization 

distribution at every point of the layer its size 

depends on the position of the particle; therefore, 

particles at different positions lead to a different 

sensor signal, as long as the particle diameter is 

at the same size scale as the sensor size. In this 

regime, the sensor can be used to estimate the 

particle position. We consider a magnetic sphere 

of r = 500 nm with a saturation magnetization of 

120 kA/m. The area around the sensor is 

discretized by a finite grid with grid coordinates 
 

1.5 ( 1) 0.2x µm i µm= − + − ⋅ ,   

1.5 ( 1) 0.1y µm j µm= − + − ⋅ ,   (8) 

0.562z µm= . 
 

with i = 1, … 16, and j = 1, … , 31. The z-

coordinate originates from the estimation of the 

minimum height possible, decomposing into the 

particle radius and a passivation layer on top of 

the sensor of around 62 nm. The response of the 

sensor can be calculated using formula (5). To 

ease the comparison between different 

configurations, we evaluate the relative ratio  
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where TMRfree and TMRpart denote the resistance 

changes without and with a particle, respectively. 

Results for a particle aligned along the y-

direction are presented in Fig. 4 for different 

field strengths. We find an increasing response of 

the sensor with increasing applied field strength 

as long as a critical value (≈ 700 Oe) is not 

exceeded. However, the TMR value itself 

decreases, therefore, the resolution increase in 

respect to space is obtained at the price of a 

smaller field of visibility.
8
 This effect is 

comparable to the focus setting of optical lenses. 

 Further, Fig. 4(b) shows the influence of the 

distance between particle and sensor. The 

obtained response decreases rapidly, which is 

due to a 1/r³-dependence of the particle stray 

field (6). At around a distance of twice the 

particle radius, the measurable signal is 

commonly below the noise signal of such 

devices. Especially for the detection of particles 

in continuous flow devices, this is a severe 

restriction. For examples on strategies to increase 

the detection threshold see Observation of 

Magnetic Particles in Continuous Flow Devices 

by Tunneling Magnetoresistance Sensors, in the 

current conference proceedings. Since the sensor 

response depends on the particle position as 

shown in Fig. 4 a space resolute detection is in 

general possible. Due to identical signals at 

different positions the method needs to be 

improved by e.g. employing sensor arrays. 



 
 
FIG. 5: Effect of multiple particles on the magnetization distribution. Particles of a magnetization MS = 1000 kA/m and 

a radius of r = 5 nm are placed on top of the sensor. The external field is chosen in z-direction. As long as particles are 

placed far enough part from each other the sensor response adds up linearly. For small distances the effects interfere, 

the signal dependence changes. 

 

 

4.2 Multiple particle effects 

 

If a certain number of particles is close to the 

sensor, the obtained response changes. We will 

assume particles of saturation magnetization of 

MS = 1000 kA/m and a radius r = 5 nm that are 

placed on top to the sensor according to positions 

given in Fig. 5. The sensor plot show the x-

component of the magnetization, the positions of 

the particles can clearly be identified. As long as 

the magnetic objects have a sufficiently high 

distance from each other (approximately a 

distance of twice the particle diameter) the 

resulting TMR-response behaves linearly. In this 

regime the sensor enables a particle number 

detection; every data value corresponds to a 

single particle number. For higher sensor 

coverage saturation can be observed; the critical 

degree of coverage depends on the parameters of 

the magnetic layer. 

If the external magnetic field is changed 

during the measurement, the dipolar coupling of 

the magnetic particles can indirectly be observed 

for sufficiently high sensor coverage. Fig. 6 

shows the TMR-response of the sensor for 14 nm 

Co-particles that are immersed in a field ranging 

from -250 up to 250 Oe. The coupling of the 

particles leads to a hysteretic behaviour of the 

total magnetic system. The model predicts a 

change of coupling depending on the sensor 

coverage that can be verified in experiments
9
. 

5. Conclusion and Outlook 
 

We have implemented the dynamic equations 

for micromagnetism coupled to single domain 

particles into COMSOL Multiphysics. Our 

model enables the calculations of the properties 

and of magnetoresistive sensors and is well 

suited for the design guidance of new sensor 

layouts or array configurations. The main goal is 

the amplification of the resolution in respect to 

spatial detection as well as number evaluation. 

Different strategies pursued at the moment are 

contained in the paper Dynamic Observation of 

Magnetic Particles in Continuous Flow Devices 

by Tunneling Magnetoresistance Sensors, in the 

current conference proceedings. 
 

 
 

Fig. 6: Indirect observation of the dipolar particle 

coupling for different degree of sensor coverage. 
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Appendix 
 

The number of equations needed for the 

model definition results in an amount of plain 

text that easily exceeds several 1000 characters 

making it impossible to implement via the 

COMSOL GUI. In the framework of our studies, 

we therefore developed the COMSOL plug-in 

PADIMA (Fig. 7) that sets up all the equations 

for all the above mentioned tasks, as well as for 

other applications e.g. frequency-resonance 

analysis of particle arrays, moving particles in 

rotating fields and their influence on sensor / 

sensor arrays, dynamic particle detection or 

multilayers under high external stresses 

combining micromagnetic equations with 

structural mechanics in ALE-frameworks. 

Material libraries are also implemented. For 

further information contact the corresponding 

author. 
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FIG. 7: Graphical user interface for the model setup enabling various applications. 




