

A Consistent Environment for the Numerical Prediction of the Properties of Composite Materials

J.Schumacher

- G. Ziegmann (Institute of Polymer Materials and Plastics Engineering)
- P. Fideu (CTC GmbH Stade), A.Herrmann (Faserinstitut Bremen e.V.)

COMSOL Conference 2009, Milano, 14-16th October

Institute of Polymer Materials and Plastics Engineering

Renewable Resource Materials

Composite Technologies

Melt Processing

Our guiding theme:
From the basic material to the final structure

A Consistent Environment for the Numerical Prediction of the Properties of Composite Materials

Motivation

- Composite material as an important material for the industry
- Complexity of the geometry
- Development of fast, reliable, cost optimized manufacturing
- Reduction of the research development time

Manufacturing process simulation (MPS)

CHAMAELEON: Description

- Combination of COMSOL and Matlab features
 - GUI from Matlab
 - Solving a field problem in COMSOL
- Flexibility
 - Multiscale modeling
 - Parameterization
- Numerical homogenization

Geometry: Multiscale Modeling

Macro Level

Micro/meso Level

REV: Representative Elementary Volume

Geometry: Parameterization

Material properties

Packing density

Hexagonal

 φ max = 0.91

Quadradic

 $\phi_{\text{max}} = 0.79$

Formula

- Environment for physical problems
- Interface between COMSOL and Matlab

Formula for thermal properties

- Rule of Mixture
 - Density:

$$\rho_l = v_f * \rho_f + (1 - v_f) * \rho_m$$

- Thermal conductivity:

$$\lambda_l = v_f * \lambda_f + (1 - v_f) * \lambda_m, \quad \lambda_t = \frac{\lambda_{fl} \lambda_m}{v_f \lambda_m + v_m \lambda_{ft}}$$

- Heat Capacity:

$$c_{p_l} = \frac{v_f * \rho_f * c_{pf} + (1 - v_f) * \rho_m * c_{pm}}{v_f * \rho_f + (1 - v_f) * \rho_m}$$

Curing kinetics

$$\frac{d\alpha}{dt} = (k \cdot \alpha^m)(1 - \alpha)^n$$

KamalSourour

with

$$k = A \cdot \exp(\frac{-E}{RT})$$

Arrhenius

Use of COMSOL

- Equation
 - Heat transfer by Conduction:

$$\rho C_p \frac{dT}{dt} - \nabla \cdot (k\nabla T) = Q$$

- PDE general mode for implementation of the KamalSourour equation

$$e\frac{\partial^2 u}{\partial t^2} + d\frac{\partial u}{\partial t} + \nabla \cdot \Gamma = F$$

with

$$e=0, \quad d=1, \quad \Gamma=0 \quad \text{and} \quad F=(k\cdot\alpha^m)(1-\alpha)^n$$

Results

- Numerical homogenization
 - Analytical

$$\lambda_l = v_f * \lambda_f + (1 - v_f) * \lambda_m,$$

- Numerical:

Thermal conductivity from the heat flux equation:

$$\dot{\vec{q}} = -\lambda \cdot gradT$$

Implementation in COMSOL:

Subdomain Integration:

Results

Influence of exothermic reaction

A Consistent Environment for the Numerical Prediction of the Properties of Composite Materials

Conclusion and outlook

- CHAMAELEON especially designed for user with interest in:
 - Fast investigation of the influence on global laminate properties
 - Optimization of the process parameter
- Principle of CHAMAELEON extensible to other physical area such as:
 - moisture behaviour,
 - electrical or
 - mechanical properties
- Intention of 3D illustrations considering the growing complexity of the geometry

Thank you for your attention!

Institute of Polymer Materials and Plastics Engineering

Agricolastraße 6 D-38678 Clausthal-Zellerfeld

Tel. +49 (0) 53 23 / 72 – 20 80

+49 (0) 53 23 / 72 - 23 24

http://www.puk.tu-clausthal.de

josefine.schumacher@tu-clausthal.de

A Consistent Environment for the Numerical Prediction of the Properties of Composite Materials