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Problem Definition

H2=1%, Catalyst: Ho+1/20,=H,0
0,=0.5%, ySt- e 2

He=98.5%

F.

T=300°C
V=1m/s

adiabatic




Model Definition (i)

® Equations:
® convection and diffusion for H,, O,, H,O, He
® convection and conduction for T

° weak] mpressible N

in 1D model
® P form the ideal gas law

© Implementation of production rates

® 1D: heat and mass source/sink are applied within the reactor domain

(production rates * catalytic area per unit volume)

e 2D: production rates of the gas species at the wall are fluxes at the

boundary
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Model Definition (ii)

® Heterogeneous kinetics!)
® 10 reactions in 3 gas species (H,, O,, H,0) and 5 surface species (PT(S),
H(S), H20O(S), OH(S), O(S))
® ki kinetics constants have several functional forms = kinetics interpreter
Cantera'” (with Matlab interface)

® species production rates in [mol/m?*/s] are defined per unit catalytic area

® Thermophysical properties:
® Cp, Cv are polynomial function of the NASA coefficients

® Viscosity, heat conductivity and diftusivities are calculated through the
Lennard-Jones potential well depth, €/k; [K] and collision diameter G [A]

(DO. Deutschmann, R. Schmidt, F. Behrendt, J. Warnatz,, Symp. (Int.) Combust., 26, 1747—1754 (1996)
@D.G. Goodwin. In Proc. CVD XVI and EuroCVD 14, M Allendorf, Maury, and F Teyssandier (Eds.),
\ Electrochemical Society, 155-162 (2005).




Use of COMSOL MPh (i)

® (lient/Server/ Matlab... : Connect to Matlab

® Options, Functions...:
® Function name: “my_reactionH2”;
® Arguments: “c_H2,c_0O2,c_ H20, c_He, T”;
® Expression: “prod_h2(c_H2,c_02,c_H20,c_He,T)”
® In “Subdomain settings” (1D model) or “Boundary settings” (2D

model) insert the function:
“my_reactionH2(c_H2,c_0O2,c_H20,c_He,T)”




Use of COMSOL MPh

Species production rates and heat of reaction as Matlab functions:

function pr_H2=prod_h2(h2,02,h20,he,T)

gas = 1mportPhase("ptcombustH2.xml","gas");
surf = 1mportinterface("ptcombustH2.xml","Pt surf®, gas);

for kz=1:length(h2)
setMoleFractions(gas, [h2(kz),02(kz),h2o0(kz),he(kz)]);

wdot = netProdRates(surft).*1000; %mol/m”™2/s
pr_H2(kz)=wdot(l);
end




Results
1. Plug Flow Reactor

° Axially segregated 1D model
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2. Dispersed Plug Flow Reactor

° Axially dispersed 1D model
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Open or closed vessel?

= Boundary Conditions for Dispersed Reactors

e Closed vessel (Closed-Closed BCs) ¢ Open vessel (Open-Open BCs)

closed closed open open
Da:Dk Da:‘D Da:D DH?D* Da:*D Da:*D
. | .
oz L 0o 2L

- Low dispersion (large Pe) = same solution in output

- High dispersion (small Pe) = very different solutions




3. DPFR + Entry Length

Entry Length Catalyst
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Summary of 1D models

e PFR is correct but not physically accurate if dispersion is

relevant

® DPFR accounts for axial diffusion
e if Dirichlet BC is set at the inlet, the ¢® (and T®) set points
are misundersood by the solver
® The Entry Lenght allows the correct settings.

® H, conversion at the inlet in a 1D model is X=80%, due to

H, forward-dittusion 100% e T~
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4. 2D model with Dirichlet BCs

® Axial symmetric model

Strong gradients at
the entrance near
the catalytic wall
are likely to give
rise to diffusive

fluxes.
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5. 2D model with Entry Length

® Axial symmetric model

H, at the entrance is
therefore less strong
gradients occur and
the reacting
conditions are

milder
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Summary of 2D models

® Conversion in 2D models is much lower, due to tranfer

resistances

e if Dirichlet BC is set at the inlet, the ¢® (and T®) set points
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Conclusions

* Heterogeneous kinetics was implemented linking the

kinetics interpreter Cantera in its Matlab interface to

COMSOL PMh
® A 1D analysis showed that with low Pe systems the

Dirichlet BC at the inlet overestimates reagents mass

fluxes

® The Open Vessel BC, implemented through an Entry
Length, assures the correct BC settings

e The 2D description is required for a catalytic reaction in

diffusion regime









