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Abstract: Objective of this contribution is to 
present a procedure for evaluating second order 
drift forces on floating bodies, often the most 
important loading component for mooring 
design, in case of high waves propagating in 
relatively shallow water depths.   
The non linearity associated to this condition, 
which is typical of installations involving wave 
energy converters, makes this problem 
particularly interesting.  In particular, the note 
focuses on the a second order force term that 
depends on the second order potential.  
Peculiarity of the method is a simple way to 
compute the product of two phasor variables. 
It is shown in great details how to carry out the 
computation by means of Comsol Multiphysics. 
 
Keywords: Wave Energy Converters, Floating 
Breakwaters, Drift forces, Moorings, Floating 
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1. Introduction 

This study deals with low frequency second 
order wave forces acting on stationary floating 
bodies such as Wave Energy Converters 
(WECs).  

Second order average and low frequency 
wave forces have an important role in the 
dynamic of floating bodies and in the design of 
their moorings [1].  The horizontal components 
are also known as wave drift forces since, under 
their influence, a floating unrestrained vessel will 
"drift away", i.e. carry out a steady slow drift 
motion along the wave direction. 

The low frequency components in the drift 
forces are associated with the frequencies of 
groups of waves present in an irregular wave 
train. Usually the force spectrum has some 
power at the moored vessel eigenfrequencies, 
and since the damping of low horizontal motions 
of moored structures is generally very low, a 
resonant behavior occurs with large amplitude 
motions. 
 It is current procedure to evaluate only the 
average second order force. This approximation 
was proposed by Newman [2]. It is shown for 
instance in [3] that the Newman approximation 

underestimates the low-frequency loads in water 
of finite depth.  
 WECs are designed to withstand extreme 
waves, e.g. with height H=25 m, and are placed 
at a depth equal to half of the average 
wavelength, e.g. in depths d=60 m.  This means 
that the non-linear parameter H/d is far larger 
than required by the Newmann hypothesis 
(H/d<0.1) and the computed drift force is 
underestimated by one order of magnitude! 
 In short, the current design of moorings often 
leads to strong errors when WECs are 
considered.   
 The evaluation of all contributions of the 
second order forces under non-linear conditions 
is therefore a very hot and practical topic, 
recently studied by many authors [4;5;6].  
 This research if carried out within the FP7 
European project "Components for Ocean 
Renewable Energy Structures", started in April 
2008.   

 
2  Hydrodynamic theory 

This section briefly introduces the 
hydrodynamic theory which forms the basis for 
computations of the mean and low frequency 
second order wave drift forces on floating 
objects. 

The fluid around the body is assumed to be 
ideal, the flow irrotational.   

An eulerian cartesian coordinate system is 
defined and forms the basis for the independent 
variables x and y, with the origin at the mean free 
surface, x positive toward right and y positive 
upward. 

 
2.1 The boundary value problem 

The formulation to second order of the 
hydrodynamic boundary problem can be found 
for instance in [7] and will not be given here for 
obvious reasons of brevity.  

The velocity field of the fluid can be 
described as the gradient of a potential Φ which 
is the sum of an incident field ΦW, a scattered 
one ΦS (which originates due to the presence of 
any obstacle) and a radiated one (given as the 
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sum of velocities times the radiated potentials 
per unit displacement rate): 
 iSW ViΦ+Φ+Φ=Φ ∑  (1) 

The total potential is required to satisfy the 
partial differential equation (PDE): 
 ∇2Φ=0 (2) 

The advantage of the decomposition is that 
the diffraction hydrodynamic problem does not 
involve the FB dynamics and can be solved first.  
The radiation hydrodynamic problem, describing 
the effect of a forced motion of unit amplitude, is 
solved separately.  The actual body periodic 
motion is obtained at last, deriving the 
hydrodynamic forces by the diffraction problem 
and the added mass and damping by the radiated 
potential. 

The motions of the body and the potential Φ 
have to be determined taking into account certain 
boundary conditions. On the free surface, the 
condition is non-linear. 

In accordance with classical hydrodynamic 
theory it is hereafter assumed that the motions of 
the body and the velocity potential of the flow, 
as well as all other derivable quantities (fluid 
velocity, wave height, pressure, hydrodynamic 
forces)  may be expanded in convergent power 
series with respect to a small parameter ε.  
 Φ=ε Φ(1)+ ε2 Φ(2)+O(ε3) (3) 
where (i) is i-th order variation. All orders are 
subject to the same domain equation (Eq. 2). 
 ∇2Φ(1)=0 (4a) 
 ∇2Φ(2)=0 (4a) 

Note that some quantities, such as wave 
elevation η or the body displacement X may also 
have a non-zero static value, denoted with the 
superscript(0): 
 η =η(0) + ε η(1) + ε2 Φ (2)+O(ε3) (5) 

 )O()()()( 31210 εεε +++= XXXX  (6) 

where the line above the X denotes its vectorial 
nature, that in 2D Comsol Multiphysics notation 
becomes [x,0,y]. 

Of course also the normal to the body does 
change as a consequence of the body rotation, 
and it is expressed by: 

 )O()( 21 εε ++= NnN  (7) 

where: 

 nN ×= (1))( α1  (8) 

(1)α  being the first order angular motion vector, 
in 2D equal to [0,θ,0]. 
In Comsol, this means to define the following 
expressions on the body boundaries: 
 N1x=nx θ; N1y=-ny θ (9) 
 

The second order potential is again obtained 
as the sum of contributions: 

)()()()()( 22222
iisw V Φ+Φ+Φ=Φ ∑  (10) 

where the subscript (w) stands for wave induced, 
(s) stands for scattered and there is a sum of 
radiated potentials per unit velocities relative to 
roll, heave and surge. 

Φw
(2) accounts for the 2nd order boundary 

condition at the free surface:   
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where the last two addends in the RHS are 
second order terms in the Bernoulli Equation due 
to velocity and pressure, which are obtained by 
the first order solution.  

At the bed and at the floating body the linear 
condition (requiring that fluid and boundary have 
the same velocity)  can be applied. 

The second order potential for scattered 
waves Φs

(2) accounts for the mismatch due to first 
order solution ate the boundaries with the bottom 
and the body (moving with first order 
oscillations). The second order potential of 
radiated waves Φ r

(2) accounts for the effect of 
second order velocities. 

More precisely, and the boundary condition 
at the bed and at the floating body for the 
scattered and radiated potential are: 
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Where X(1) can be obviously derived by the 
first order velocity vector divided by -iω. 

 nVnV iii
)()()( 222 =Φ∇  (13) 

The free surface boundary condition for Φs
(2)  

and Φs
(2) is merely the linear one. 

 
2.2 The second order force for 1 frequency 

Second order drift forces can be derived 
based on potential flow assumptions, simply as 
integral of the pressures around the hull. If we 



separate the hydrostatic forces and include the 
hydrodynamic reaction forces in the added mass 
and damping coefficient, the following well 
known equations for the forces and the moments 
are obtained: 
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where ηR is the relative wave elevation, i.e. the 
elevation minus the vertical displacement of the 
floating body. 
Obviously, that the mean value of these 
oscillating contributions is not zero in general. 

It should be noted that 4 of the 5 terms in 
Eqs. (14-15) are caused by 1st order potentials 
only. The 5th term, involving Φw

(2), is the focus 
of the following investigation. But first, in next 
Sub-Section, we need to recall why the 
frequency of the second order contribution in 
irregular waves may have some power at the 
period of the wave group (where the wave 
spectrum may be completely flat).  
 
3 Effect of wave superposition 

It is a common practice in offshore 
engineering to use linear summation of Fourier 
wave components to simulate random sea 
surface.  When quadratic terms appear, the 
nonlinear wave-wave interactions induce new 
terms which oscillate at different frequencies. 

For instance the product of two sinusoids 
having angular frequencies ω1 and ω 2 is equal to 
the sum of two sinusoids with half amplitude and 
oscillating with frequencies ωS=(ω 1 + ω 2) and 
ωD=(ω 1 - ω 2). 

It can therefore be easily understood that 
second order quantities contain both a low and a 
high frequency component.   

The consequences of such high component 
on the mooring system is not relevant, but the 
low frequency terms is.  It is obvious to see it by 
considering the extreme case with ω1 = ω2, when 
a steady component arises. 

Eqs. 14-15 are easily modified to account for 
the nonlinear force arising by the combination of 
two waves with unit amplitude and frequencies 
ω1 and ω2: it is simply necessary to consider 
each term as the sum of two waves. 

For the first 4 terms depending only on first 
order quantities, in order to evaluate the responce 
to any wave super there are several well known 
procedures based on the quadratic transfer 
function. 

In the following, we will suggest a procedure 
to obtain all terms in case of two superimposed 
waves. 

 
3.1 The peculiarity of the computation 

Any sinusoidal variable A(x,t) can be 
described by the complex variable φ(x): 

A(x,t)  =a(x) cos(ωt+ε(x))= 
 =Re[a(x) e (iε(x)) e (iωt)]=Re[φ(x) e(iωt)]  (16) 

where φ(x)=a(x) e (iε(x)).  
That is convenient in linear theory since the 
following relation holds: 

A(x1,t)+A(x2,t)= Re[(φ(x1)+ φ(x1)) e(iωt)]  (17) 

and it is possible and convenient to study the 
linear relations involving A(x,t) by solving only 
φ(x). 
Special attention is needed when products are 
involved, for which case we argued that: 

A(x1,t)*A(x2,t) = + Re[0.5φ(x1)φ(x2)e(i2ωt)]+  
 + Re[0.5φ(x1)φ(x2)C]    (18) 

where the superscript C stands for complex 
conjugate.  Eq. (18) merely states that the 
product of two functions with same frequency is 
a constant plus a contribution that oscillates in 
time with twice such frequency.  

Similarly, if we deal with the product of two 
functions A and B with different frequencies, 

A(x,t)=a(x) cos(ω1t+ε1(x))= + Re[φ(x1)e(iω1t)]  
B(x,t)=b(x) cos(ω2t+ε2(x))= + Re[ψ(x1)e(iω2t)] 

the product becomes:  

A*B= Re[0.5φψ e(iωSt)+0.5φψ C e(iωDt)])     (19) 



Taking advantage of Eq. 18-19, we have a 
method to solve the products of phasor variables, 
and hence the second order potential problem. 
Note that our attention is mainly devoted to the 
lower frequency part of the products. 

 
3.2 The governing equations for two 
frequencies 

In this SubSection we present the governing 
equation of the second order potential problem 
when the incident wave is a superposition of two 
linear waves with frequencies ωi and ωj.   

The two first order potential is obtained with 
the model described in [8]. The total first order 
potential Φ ij

(1) is simply the sum of two incident 
potentials, two scattered and six (in 2D) radiated 
ones. 

The second order potential is defined as: 

 )()()()()( 22222
iiSW

V Φ+Φ+Φ=Φ ∑  (19) 

As shown above, second order term Φw
(2) 

should compensate for the second order "error" 
at the surface non-linear boundary condition 
produced by global 1st order solution.   

We divide the 'error' in two contributions, 
that we know oscillating at the frequency of the 
sum and difference. The second order potentials 
required to 'absorb' such 'error' are then also 
divided in two parts.  

For instance, the second order potential of the 
incident waves Φw

(2) -dealing with the free 
surface boundary condition- is: 

 )()()( 222
wLFwHFw Φ+Φ=Φ  (20) 

where HF and LF stand for High and Low 
frequency. 

The two contributions are searched 
separately, applying the boundary condition, that 
for the low frequency term with frequency 
ωD (remember that ωD=ωi-ωj), reads: 
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where the product of phasor variables are carried 
out according to Eqs. (18-19). 
All the derivatives of Φij

(1) must be supplied as 
global variables, considering that the two waves 
that give origin to it have different time 
derivatives. 

For the scattered and radiated second order 
potentials, the body boundary condition does not 

change if the high or the low frequencies 
component is considered.  

For the scattered one, the boundary condition 
is (cfr. Eq. 13): 
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where N(1) also accounts for the first order 
displacement due to both waves. 

The boundary condition correspondent to 
Eq.(14) for the radiated problem is trivial: 
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Whereas the surface boundary conditions are 
all similar. The scattered low frequency potential 
is required to satisfy the: 
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4 Model description 

The domain consists of the water around a 
floating body, moored by 2 chains.  

The body indefinitely long with square cross 
section, 0.3 m x 0.3 m, mass of 88 kg/m.  It is 
constrained move only in the 2DV plane, having 
only 3 degrees of freedom.  

Chains are loose, 80 g/m, two every 50 cm, 
initial angle 35°. Water depth is 0.8 m. 

The scale is suited for wave flume testing but 
does not resemble any real object. 

In order to describe the model, we propose 
its main structure.  

 
Dependent variables: 

- 2 set of 4 first order complex potentials (1 
scattered and 3 radiated each), one for the two 
angular frequencies ω1 and ω2. 
- 2 set of 2 second order complex potentials 
(wave and scattered), for the frequencies ωS and 
ωD.  

 
Domain equation:  

- Eq. (2) for all dependent variables. 
 
Boundary Conditions:  

- See section 2. 
 
Global expressions: 

- the incident first order potentials (for 
frequency 1 and 2), and its spatial derivatives; 



- the first order velocities in x and z and the 
rotations, calling an external script file, that can 
account for chain non-linearities; 
- the global first order potential, as the sum of 
incident, scattered and radiated potential for the 
two problems, including the spatial and temporal 
derivatives; 

 
Boundary expressions: 

- the second order normals defined in Eq.(7). 
 

Boundary integration-coupling-variables: 
- first order forces and moments for the two 
first order problem and the 5 terms of the second 
order forces;  
- added masses and damping coefficients (all 
the 3x3 matrix for both problem); 
 

Point integration-coupling-variables: 
- relative wave elevation at the body, used in 
the first term of Eq. (14).  The integration in 2D 
of this term is merely a difference of the two 
points placed at the intersection between body 
and waterlevel. The normal direction is 
undefined here and we used the sign of the 
distance between point and gravity center to 
define the force direction. 
 
All of the above are complex 'phasor' variables. 

 
The wave group in the incident wave field 

can be appreciated in Fig 1, that shows the global 
incident wave potential. 

 
5 Model Results 

The first results concerns the limit case 
ω1=ω2.  

Fig 2 shows the case with infinitesimal wave 
amplitude. The first three steady terms of the 
second order forces are non-dimensionalized by 
ρg(ζ(1))2, where ζ(1) is the first order incident 
wave amplitude, plotted Vs kLb, where k is the 
wavenumber and Lb is the length of the floating 
body.   

The same three terms are presented in Fig. 3, 
a well known example of second order forces 
[7], computed for a sphere of radius a. Plots 
cannot be directly compared, since they describe 
different structures.  Nevertheless it is possible to 
see  a similar trend in the main components. 
Term 4 is zero since there is no moment in the 
sphere, whereas it is non-zero for our example. 

Such term is not plotted in Fig. 2 to avoid 
confusion. 
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Fig. 2 First three terms of the drift force 

computed for a floating box, Lb=side length. 
 

 
Fig. 3.  First three terms of the drift force 

computed for a floating sphere, a=radius. [7]. 
 

It can be seen that the drift force is zero at 
low frequencies, where the body floats with the 
waves and transmission is complete. Similarly, at 
high frequency, all the wave energy is reflected 
and the body is subject to a well predictable total 
nondimensional force, that is (for our simple 
example) equal to 1/2.   

The second example computes the second 
order potential Φw

(2) with two different 
frequencies relative to a period of 1.0 s and 0.91 
s and heights so that (H1+H2)/d =1/4. 

Time for 1 run is approximately 1 minute. 
The procedure is conveniently run by a script 
file, and a full matrix of 60 by 60 frequencies 
would take therefore 5 days to run. 

Actually, not all combinations are important, 
but only those that produce a frequency 
difference which is of interest for the mooring 



system: the matrix needs to be filled only for a 
band of 3-5 frequencies, for a total in our 
example of 180-300 elements, that can be 
computed in 3-5 h. This is still a reasonable 
amount of time, since one simulation can run 
overnight.  

Fig 4 shows for the case of two equal 
amplitude waves (H/d=0.2) with the two wave 
frequencies ω1 and ω2. Convergence is very 
rapid, and the linear solver takes 5 steps only, 
although a 5th order interpolating function with a 
fine grid is necessary to obtain better results. 

The Low frequency component is shown in 
color scale, the high frequency component is 
given by deforming the surface elevation. It can 
be seen that wave distortion is significant.  

The second order force in this case is again 
given by Eq. 14, but each term is formed by 4 
low frequency contributions: two constants, due 
to potentials oscillating with ω1 and ω2, and two 
(equal) potentials oscillating with the frequency 
of the difference.  
 

6. Conclusions 
 The note shows how to approach the problem 
of finding second order forces on a floating body 
which is placed in relatively shallow waters in 
comparison to waterdepth.  
 All five terms forming the second order drift 
force are described first with reference to a 
single regular wave and then with reference to a 
sum of waves. 
 One application is presented, showing 
reasonable results, in quantitative agreement 
with asymptotic behaviors. A finer grid should 
have been used in the computations to 
check/increase accuracy. 

 The importance of the 5th term of the drift 
force is also briefly investigated, although this 
part of the research is still at its earlier stage.  
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Fig. 1. 1st order waves of period 0.9 and 1 s (incident+scattered). Vertical deformation = 1. Note that 
there is a slight beat between the 0.9 and the 1.0 s incident waves (=wave height is not constant). 

 
Fig 4. The 2nd order low frequency potential ΦwLF

(2) in color scale, and elevation due to high & low 
frequencies components (2nd order wave correction and scattered), solving Fig 1. Vertical deformation = 1. 




