HOCHSCHULE

Inductance of Magnetic Plated Wires as a Function of Frequency and Plating Thickness

Thomas Graf and Othmar Schälli Hochschule Luzern, Technikumstrasse 21 CH-6048 Horw, Switzerland

log(Wav_emqa)

LUZERN

HOCHSCHULE

Motivation

COMSOL CONFERENCE 2009

減させることができます。これは磁性シールド層により、コイルに生じる近接効果の 影響を軽減し、導体の電流分布を均一にし、導体の実効抵抗を低減しうるためです。

Magnet-plated Wire (magnetic wire) is a copper conductor covered with a thin layer of highly magnetic material, over which a polyurethane insulating film is enameled. When used for high-frequency coils, it reduces high-frequency losses by 10% compared to conventional polyurethane enameled copper wire. The reduction is due to the magnetic shielding, which lowers the proximity effect generally occurring in these types of coil, evenly distributes electric current in the conductor, and decreases the effective resistance of the conductor.

●特 長 Features

●高周波コイルのQ特性が向上します。●はんだ付けが可能です。 ●部品が小型化できます。●高性能なコイルの設計が可能です。

●Q-characteristics of high-frequency coils are improved. ●The wire is solderable. ●Components can be miniaturized. ●High-performance coils can be designed.

●Applications: High frequency coils, delay lines.

●製造範囲 (Range of manufacture) 絶縁皮膜のUEのみ

記号 Code	最高使用周波数带 (MHz) Maximum Frequency Band Used (MHz)	絶縁皮膜 Insulating Film	製造範囲 (mm) Range of Manufacture	
LICEDAN	4.5	115	0.05 0.10	
UEFPW	10.7	UE	0.05~0.12	

●構造 (Structure)

•Applications : High frequency coils, delay lines.

●製造範囲 (Range of manufacture) 絶縁皮膜のUEのみ

記号 Code	最高使用周波数带(MHz) Maximum Frequency Band Used (MHz)	絶縁皮膜 Insulating Film	製造範囲(mm) Range of Manufacture
UEFPW	4.5		0.05~0.12
	10.7	UE	

Improved Q-characteristics of high-frequency coils

HOCHSCHULE LUZERN

Motivation

Magnet-plated Wire (magnetic wire) is a copper conductor covered with a thin layer of highly magnetic material, over which a polyurethane insulating film is enameled. When used for high-frequency coils, it reduces high-frequency losses by 10% compared to conventional polyurethane enameled copper wire. The reduction is due to the magnetic shielding, which lowers the proximity effect generally occurring in these types of coil, evenly distributes electric current in the conductor, and decreases the effective resistance of the conductor.

●高周波コイルのQ特性が向上します。●はんだ付けが可能です。 ●部品が小型化できます。●高性能なコイルの設計が可能です。

●Q-characteristics of high-frequency coils are improved. ●The wire is solderable. ●Components can be miniaturized. ●High-performance coils can be designed.

LUZERN

HOCHSCHULE

Outline

- Equations for Resistance R, Inductance L and Skin Depth δ_{Skin}
- Single Loop Analysis for a Microscopic Understanding
 - COMSOL Simulation
 - Results and Discussion
 - Scaling
- Coil Analysis and Comparison with Experiment
 - COMSOL Simulation
 - Results and Validation with Experiment
- Summary

Lucerne University of Applied Sciences and Arts HOCHSCHULE Current Layer d, δ vs. f Conference 2009 LUZERN

Equations

HOCHSCHULE LUZERN

Behavior at High f

COMSOL CONFERENCE 2009

 $\mathsf{R}_{\mathsf{eff}} = \frac{1}{\sigma} \cdot \frac{\mathsf{L}}{\mathsf{A}_{\mathsf{a}^{\mathsf{u}}}} \approx \frac{1}{\sigma} \cdot \frac{\mathsf{D}\pi}{\mathsf{d}\pi \cdot \delta_{\mathsf{a}\mathsf{u}}} = \frac{\mathsf{D}}{\mathsf{d}} \sqrt{\frac{\mu_{\mathsf{0}} \cdot \mu_{\mathsf{r}} \cdot \pi}{\sigma}} \cdot \sqrt{\mathsf{f}}$ $\mathsf{R}_{\mathsf{inf}}\left(\mathsf{f}\to\infty\right)\sim\mathsf{f}^{\frac{1}{2}}$ resistance R: $\left(L_{e} = imag\left(\frac{V_{Loop}}{I \cdot 2\pi f}\right) \sim \frac{V_{Loop}}{I \cdot f} \sim \frac{R}{f} = \frac{1}{\sqrt{f}}$ $L_{e} \left(\delta_{skin} \leq \ell_{plating} \right) \sim f^{-\frac{1}{2}}$ "inner" inductance, via electric potential: depends on skin depth inductance L: $L_{m} = 2 \cdot \frac{E_{\text{mag. field}}}{l^{2}} \sim \frac{B^{2}}{l^{2}} \sim \frac{l^{2}}{l^{2}} = \text{const.}$ $L_{m,inf}(f \rightarrow \infty) \sim const.$ $L[nH] \approx 2 \frac{D\pi}{[cm]} \left(ln \left(\frac{D\pi}{d} \right) - 1.07 \right)$ "outer" inductance, via magnetic field energy: depends on geometry only (D > 20d; Meinke, Springer, 1992)quality factor **Q**: $Q = \frac{2\pi f \cdot L}{R} \begin{cases} Q_e = \frac{2\pi f \cdot L_e}{R} \sim \frac{f \cdot f^{-\frac{1}{2}}}{\sqrt{f}} \\ Q_m = \frac{2\pi f \cdot L_m}{R} \sim \frac{f \cdot \text{const.}}{\sqrt{f}} \end{cases}$ $\mathsf{Q}_{\mathsf{e}}\left(\delta_{\mathsf{skin}} \leq \ell_{\mathsf{plating}}\right) \sim \mathsf{const.}$ $Q_{m,inf}\left(f\to\infty\right)\sim f^{\frac{1}{2}}$

HOCHSCHULE LUZERN

Cu-Ni Wire Loop

Magnetic energy density log(Wmav_emqa), 10⁵ Hz

Magnetic flux density log(normB_emqa), 10⁵ Hz

subdomains

0.03

0.04

0.02

0.01

0

LUZERN

HOCHSCHULE

Cu-Ni Wire Loop

COMSOL CONFERENCE 2009

-	🗊 Global	Expressions
	Name	Expression
	R	real(Vin/(I3+I4))
	Rp	R3*R4/(R3+R4)
	Lm	2*2*Wm/abs(I3+I4)^2
	Le	imag(Vin/(I3+I4))/(Omega)
	Q	Omega*Le/R
	Omega	2*pi*freq
	Wm	WMag1+WMag2+WMag3+WMag4
	Wm1	WMag1
	Wm2	WMag2
	Wm12	WMag1+WMmag2
	Wm3	WMag3
	Wm4	WMag4
	Wm34	WMag3+WMag4
	R3	real(Vin/I3)
	R4	real(Vin/I4)
	dEff	D/d*1/(sigma3*R)

onstants

Name	Expression	Value
Vin	1	1
sigma3	1.0e7[S/m]	1e7[S/m]
sigma4	6.0e7[S/m]	6e7[S/m]
D	0.008	0.008
d	0.0012	0.0012
mur3	1000	1000
mur4	1	1

ubdomain Integration Variables				
Source Destination				
Subdomain selection	Name	Expression	Integration order	
	WMag1			
2	WMag2			
3	WMag3	2*pi*r*Wmav_emqa	4	
4	I3	Jphi_emqa	4	
	I4			
	WMag4			

Subdomain Settings - Azimuthal Induction Currents, Vector Potential (emga)

Equation

Subdo

$$(j\omega\sigma - \omega^{2}\epsilon_{0}\epsilon_{r})\mathbf{A} + \nabla \times (\mu_{0}^{-1}\mu_{r}^{-1}\nabla \times \mathbf{A}) - \sigma\mathbf{v} \times (\nabla \times \mathbf{A}) = (\sigma V_{loop}/2nr + J^{e}_{\phi})\mathbf{e}_{\phi}, \ \mathbf{A} = A_{\phi}\mathbf{e}_{\phi}\mathbf{e}_{\phi}$$

Subdomains	Groups		Infinite Elements Forces			Init	Element Coli
Subdomain s	election		Magr	netic Parameters	;		Electric Parameters
1			Electric material	properties and	current sources		
2			Library materia	l:		~ (Load
4			Constitutive	relation			
			$\odot \mathbf{D} = \varepsilon_0 \varepsilon_r \mathbf{E}$	$\bigcirc \mathbf{D} = \varepsilon_0 \mathbf{E} +$	Р	○ D =	$\varepsilon_0 \varepsilon_r \mathbf{E} + \mathbf{D}_r$
			Quantity	Value/Expres	ssion	Unit	Description
			V _{loop}	Vin		۷	Loop potential
			^{Je} φ	0		A/m ²	External current density
		▼	σ	sigma3		S/m	Electric conductivity
Group:		~	٤٢	1			Relative permittivity

Applied Sciences and Arts HOCHSCHULE LUZERN LVERSUS fand &, Inset

Applied Sciences and Arts HOCHSCHULE CU-LOOP, Line Plot: jPhi CONFERENCE LUZERN

Applied Sciences and Arts HOCHSCHULE Ni(50µm)-Cu Loop, jPhi CONFERENCE LUZERN

Lucerne University of Applied Sciences and Arts Skaling COMSOL HOCHSCHULE CONFERENCE LUZERN 2009 1.E+00 1.E-06 Ni 1.E-01 R (D) Inductance L (H) 10 2 *µ*m 1.E-07 $\ell = 2 \,\mu m$ Ni Cu 1.E-02

Same results, different plating thickness - Skaling for easier meshing! Example: $d_{new} = 5 \times d_{old}$

Increase
$$\delta_{skin}$$
 while
keeping R = constant $\delta_{skin,new} \equiv 5 \times \delta_{skin,old} = \sqrt{\frac{1}{\mu_0 \cdot \frac{\mu_r}{5} \cdot \pi f \cdot \frac{\sigma}{5}}} R_{new} \equiv R_{old} = \frac{D}{d} \cdot \frac{1}{\frac{\sigma}{5} \cdot d \cdot 5}$

Milan, 16.10.2009

LUZERN

HOCHSCHULE

Milan, 16.10.2009

LUZERN

HOCHSCHULE

Plated Coil

N = 30 turns $\ell = 2.7$ mm, length of coil D = 8.0 mm, diameter d = 80 μ m, wire diameter

LUZERN

Ó

Plated Coil HOCHSCHULE

Name Expression R real(Vin/(I3+I4))*turns^2	Source Destination $R = real \frac{v_{Loop} + v_{Loop}}{v_{Loop} + v_{Loop}} = real \frac{v_{Loop}}{v_{Loop} + v_{Loop}} \cdot N^2$
R real(Vin/(I3+I4))*turns^2	
Rp R3*R4/(R3+R4) Lm 2*2*Wm/abs(13+I4)^2*turns^2 Le imag(Vin/(I3+I4))/(Omega)*turns^2 Q Omega*Le/R Omega 2*pi*freq Wm WMag1+WMag2+WMag3+WMag4 Wm1 WMag1 Wm2 WMag2 Wm12 WMag3	Subdomain selection Name Expressio Mag1 Mag2 Mag2 Mag2 Mag2 Mag2 Mag2 Mag2 Mag2 Mag3 $2*pi*r*Wmav_emqa$ I_{a} I_{a} I_{a} I_{a} I_{a} I_{a} Mag2 I_{a} I_{a} I_{a} I_{a} Mag3 I_{a} I_{a} I_{a} Mag3 I_{a} I_{a} I_{a} Mag3 I_{a} I_{a} I_{a} Mag3 I_{a} I_{a} I_{a} Mag3 I_{a} I_{a} Mag3 I_{a} I_{a} Mag3 I_{a} I_{a} Mag3 I_{a} I_{a} Mag3 I_{a} I_{a} Mag4 Mag3 I_{a} Mag3 I_{a} Mag3 I_{a} Mag3 I_{a} Mag3 I_{a} Mag3 I_{a} Mag3 I_{a} Mag3 I_{a} Mag3 I_{a} Mag3 I_{a} Mag3 I_{a} Mag3 I_{a} Mag3 I_{a} Mag4 Mag3
Wm4 WMag4 Wm34 WMag3+WMag4 R3 real(Vin/I3) R4 real(Vin/I4) C Cancel	Equation $(j\omega\sigma - \omega^{2}\varepsilon_{0}\varepsilon_{p})\mathbf{A} + \nabla \times (\mu_{0}^{-1}\mu_{r}^{-1}\nabla \times \mathbf{A}) - \sigma\mathbf{v} \times (\nabla \times \mathbf{A}) = (\sigma V_{loop}/2\mathbf{n}\mathbf{r} + \mathbf{J}^{e}{}_{\phi})\mathbf{e}_{\phi}, \mathbf{A} = \mathbf{A}_{\phi}\mathbf{e}_{\phi}$ Subdomains Groups Infinite Elements Forces Init Element Column
Constants Name Expression Value Vin 1 1	Subdomain selection Magnetic Parameters Lietuit Parameters 1 Imagnetic Parameters Lietuit Parameters 2 Library material: Imagnetic Parameters 3 Library material: Imagnetic Parameters 4 Imagnetic Parameters Load
sigma3 1.0e7[S/m] 1e7[S/m] sigma4 6.0e7[S/m] 6e7[S/m] D 0.008 0.008 d 0.0012 0.0012 mur3 1000 1000 mur4 1 1	$\bigcirc \mathbf{D} = \varepsilon_0 \varepsilon_r \mathbf{E} \bigcirc \mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P} \qquad \bigcirc \mathbf{D} = \varepsilon_0 \varepsilon_r \mathbf{E} + \mathbf{D}_r$ $\bigcirc \mathbf{Quantity} \forall \mathbf{alue} / \mathbf{Expression} \qquad \mathbf{Unit} \mathbf{Description}$ $\bigvee_{loop} \forall \mathbf{in} \qquad \forall \text{Loop potential}$ $\int_{\phi}^{e} \qquad 0 \qquad A/m^2 \text{External current density}$ $\sigma \text{sigma3} \qquad S/m \text{Electric conductivity}$

LUZERN

HOCHSCHULE

Q of Plated Coil

LUZERN

HOCHSCHULE

Measurement

Milan, 16.10.2009

LUZERN

HOCHSCHULE

Simul. vs. Experiment

COMSOL CONFERENCE 2009

LUZERN

HOCHSCHULE

Summary

- 1. R, L and Q of plated loops and coils can be simulated with the classical electrodynamics AC/DC module of COMSOL
- 2. For each plating thickness there exists a regime where Q is much larger than for pure copper or pure nickel loops and coils
- **3.** A true application of this phenomenon is not yet found, if not for the power transfer by magnetic resonance (Science, 317, p83, 2007)
- Excellent agreement between simulation and experiment can be found at modest frequencies below 10 MHz
- **5.** Comparison between simulation and experiment at higher frequncy is not possible due to a stray capacitance and the occurrence of a resonance