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• To build a time-independent neutronic model of the

representative core channel of a MSR based on two energy

group diffusion theory with six group of delayed neutron

precursors.

• Why COMSOL Multiphysics® ?

Given the unique feature of the molten salt, which

Vito Memoli

Given the unique feature of the molten salt, which

simultaneously plays the role of fuel and coolant, the primary

system presents a strong coupling between neutronics and

thermo-hydraulics. COMSOL represents a powerful tool for the

simulation of such multi-physics systems.

• Full validation of the model by means of the neutronic code

MCNP (Briesmeister, LA-13709-M).
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Fission reaction

Reaction Product
Energy 

(%)
Range Time Delay

Kin. En. Fission 

Fragments
80 < 0.01 cm

instantaneou

s

Fast Neutrons 3
10-100 

cm

Instantaneo

us

Fission Gamma Ray 4 100 cm
instantaneou

s

]MeV200Q[    neutrons  fragmentsFission )U(Un *234
92

233
92

1
0 =γ+ν+→→+

Vito Memoli

• Fission reactions produce intermediate mass fragments, which are unstable

and can decay by β emission. The daughter nucleus can decay via neutron

emission (delayed neutrons). These fragments are the so-called “neutron

precursors”.

• The neutrons emitted (prompt or delayed) can start a new fission reaction

inducing a chain reaction.

s

Fission Product 

decay
4 - delayed

Neutrinos 5 delayed

Nonfission 

reactions due to 
neutron absorption

4 100 cm delayed
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Not all the neutrons contribute the chain reaction

because of parasitic capture and streaming out of the

multiplying region, which can occur before a new

fission reaction.

We can define the multiplication factor as follows:

)(

)(

tL

tP
k =

P(t)

Fission chain reaction
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P(t) = rate of neutron production in reactor

L(t) = rate of neutron loss in reactor (absorption plus

leakage)


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k

Reactor is supercritical and power increases

Reactor is critical and power keeps constant

Reactor is subcritical and power decreases

Commonly the reactivity ρ=(k-1)/k, which measures the deviation of the

system from critical configuration, is used.
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The Molten Salt Breeder Reactor concept, proposed by ORNL (Robertson, ORNL-4541)
is a thermal reactor moderated by graphite and cooled by the liquid fuel.

• 1000 MW of electric power

• Thermal neutron spectrum and Thorium fuel cycle

• The core is formed of square graphite blocks, each one with a central

molten salt channel

• Fuel composition: 7LiF(71.7 mol%), BeF2(16 mol%), ThF4(12 mol%)

and UF (0.3 mol%). Single primary fluid (fissile and fertile mixed

Reactor power [MWt] 2250

Average core power density 

[kW/l]
22.2

Fuel salt flow rate [kg/h] 4.3·107

Main Features Design ParametersDesign ParametersDesign ParametersDesign Parameters
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Uranium – Thorium Cycle  (breeding)

2 4

and 233UF4(0.3 mol%). Single primary fluid (fissile and fertile mixed

together)
Core height [m] 3.96

Fuel salt velocity [m/s]

0.61-

2.4

4

Inlet core temperature [°C] 566

Outlet core temperature [°C] 704
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OUT (705 ºC)
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• The liquid fuel circulates through the core. When the fuel passes through the

graphite blocks, neutrons are slowed down, fissions occur and the fuel heats up.

• When the fuel leaves the core, chain reaction ends. Neutron precursors exit the core

too.

• Chemical Reprocessing for 233Pa and bred 233U removal.

IN (565 ºC)

Chemical 

Reprocessing

Molten Salt

Core
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A 3D model of  ¼ of  the representative channel of  MSBR inner zone is 

considered. 
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Constituent Atomic density [atom·b-1·cm-1]
232Th 3.75·10-3
233Pa 3.88·10-7
233U 6.64·10-5
234U 2.31·10-5
235U 6.01·10-6
236U 6.21·10-6
237Np 8.59·10-7
238Pu 6.10·10-6
239Pu 1.29·10-7
240Pu 6.83·10-8
241Pu 6.21·10-8
242Pu 1.23·10-7
6Li 1.95·10-7
7Li 2.24·10-2
9Be 5.00·10-3
19F 4.77·10-2

Graphite 9.51·10-2

L [cm] 5.08

H [m] 3.96

RF [cm] 2.08

vin [m·s
-1] 1.47

Tref [K] 900

Reference DataReference DataReference DataReference Data

Material Material Material Material 
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Time-independent two-group diffusion equations (Di Marcello, 2009)
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φ1 is the fast neutron flux, En≥ 1 eV

φ2 is the thermal neutron flux, En < 1eV

ci is the i-th precursor group concentration

τEL re-entering time of the fuel in the core

Di, Σfi, Σai, Σi�j are the group constants

u is the fuel velocity (assumed constant)

βi, λi are respectively the fraction and decay

constant of the i-th precursor group

∑
=

β=β
6

1i
i

The system above represents an eigenvalues problem. To solve it one must find the

eigenfunctions (φ1,φ2,ci)µ and the eigenvalues keff,µ which satisfies the system. The

first eigenvalue corresponds to the so-called effective multiplication factor.

ELie)Hz(c)0z(c ii
τλ−===
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The model was implemented using the Convection and Diffusion application

mode of COMSOLCOMSOLCOMSOLCOMSOL using eigenvalue solver. The group constants were calculated

by means of the transport code NEWT of SCALESCALESCALESCALE5555....1111 package using ENDF/B-VI.7

nuclear library (DeHart, ORNL/TM-2005/39).

Moreover, a MCNPMCNPMCNPMCNP model using JEFF31 library was used for the validation.

νΣf [cm-1] ΣC [cm-1] ΣTOT [cm-1]

Group Fast Thermal Fast Thermal Fast Thermal

Fuel saltFuel saltFuel saltFuel salt
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Fuel saltFuel saltFuel saltFuel salt

MCNP 6.22·10-3 4.23·10-2 6.86·10-3 1.62·10-2 3.10·10-1 3.14·10-1

SCALE5.1 6.00·10-3 4.43·10-2 6.96·10-3 1.71·10-2 3.17·10-1 3.17·10-1

Diffa [%] -3.5% 4.7% 1.5% 5.6% 2.3% 1.0%

GraphiteGraphiteGraphiteGraphite

MCNP - - 1.18·10-5 1.37·10-4 3.95·10-1 4.51·10-1

SCALE5.1 - - 1.32·10-5 1.49·10-4 4.07·10-1 4.61·10-1

Diffa [%] - - 12% 8.8% 3.0% 2.2%
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10 1.1

Vertical and Radial Flux  Profiles

Code keff
COMSOL 1.04216

MCNP 1.04745 ± 0.00079

Multiplication Factor (keff)
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Due to the flowing of the fuel through the primary loop, a certain amount of

neutron precursors, depending on fuel velocity, can decay outside the core

reducing the system reactivity differently from a solid fuel reactor.

6

8

10
Fast neutron flux
Thermal neutron flux
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The fuel velocity strongly affects the precursor concentration, whereas

the effect is negligible on neutrons.
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Comparison of COMSOL model with theoretical models. Two cases considered:

1.Closed primary loop (re-circulating fuel)

2.Infinite loop τEL� ∞

First Case

ZeroZeroZeroZero----dimensionaldimensionaldimensionaldimensional theoretical theoretical theoretical theoretical 
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reactivity loss is given by:reactivity loss is given by:reactivity loss is given by:reactivity loss is given by:
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Second Case
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A 3-D time-independent neutronic model of the representative MSBR

channel was built in COMSOL.

The neutronic validation framework has shown that numerical results

obtained by means of COMSOL and SCALE5.1 in terms of flux

profiles reasonably agree with the MCNP results.

The encountered discrepancies can be considered acceptable from

Vito Memoli

The encountered discrepancies can be considered acceptable from

an engineering point of view.

The time-independent analysis permitted to evaluate the effect of

fuel velocity on flux profiles, precursor concentration and system

reactivity of MSBR channel.

All things considered, COMSOL revealed itself as a useful tool, able

to treat the neutronics of a typical MSBR core channel, in prospect of

analysing its dynamic behaviour.
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The tested methodology for neutronic analysis with COMSOL

supported by SCALE5.1 group constants calculation proved itself to

be reasonable from an engineering point view. This confirmation will

permit to extend the analysis to a more wide level which means:

- Refinements in the neutronic modelling of both the molten salt and

Vito Memoli

- Refinements in the neutronic modelling of both the molten salt and

the graphite, as well as of their "nuclear" interaction (temperature

dependent cross section).

- Transient analyses oriented to the safety and the control strategy of

the reactor, including neutronic thermo-hydrodynamics coupling in

COMSOL.

- Adoption of more complex geometries.
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