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Abstract: A ball is in contact with a plane, and a 
lubricant separates the two surfaces to decrease 
friction during their relative motion. To avoid 
wear, the lubricant film thickness should be 
higher than the surface roughness. The goal of 
this paper is to show how it is possible to solve 
efficiently the problem of elastohydrodynamics 
lubrication with Comsol Multiphysics, using a 
PDE on boundary to implement the Reynolds 
equation.  
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1. Introduction 
 

The good performance of mechanical systems, 
bringing into play solids in relative motion, is 
conditioned by an adequate design of the 
connections, and thus of the contacts, potentially 
generating friction and wear. The usual (and very 
old [1]) technology to control these phenomena 
is lubrication. This one makes it possible to 
intercalate a medium (generally fluid, but 
sometimes solid or pasty) between the solids in 
contact, that is ready to support a load (normal 
with the contact) and to adapt the difference in 
speed (tangential) of surfaces, thus avoiding a 
direct interaction of the solids which would 
generate degradations [2]. For the fifty last years, 
remarkable progress has been made in order to 
build predictive models of the lubricated 
contacts. This was made possible due to the 
numerical resolution (more and more powerful) 
of the equations of lubrication whose icon is the 
Reynolds equation, derived from the Navier-
Stokes equations in the case of a very thin 
lubricant film. In this approach, the physical 
parameters (pressure, viscosity, density) are 
considered constant across the lubricant 
thickness. If the resolution of only the Reynolds 
equation makes it possible to find the 
distribution of pressure in the fluid in the case of 
conform geometries (like the hydrodynamic 

bearings) [3], it is necessary to solve the elastic 
deformation of the solid surfaces in the case of 
non-conform contacts (as in the cam system, in 
ball bearings, etc.) where pressure, concentrated 
on a very weak contact area, reached the order of 
the gigapascal [4]. Traditional resolution 
methods of this lubrication regime, known as 
elastohydrodynamic lubrication (EHL), can be 
found in [5] and [6]. Since recently an original 
method based on finite elements with Comsol 
Multiphysics was developed in LaMCoS ([7], 
[8]). It allows a strong coupling between the 
deformation of the solid surfaces and the flow of 
lubricant computed by the Reynolds equation, on 
a boundary of the elastic solids (where the 
contact occurs). 

 
2. Model 
 

 The calculation of film thickness and pressure 
distributions is done by solving simultaneously 
the two physics involved in EHL – 
hydrodynamics and linear elasticity – using a 
finite element analysis. This method will not be 
detailed here (see references [7] and [8] for 
details) but the equations solved will be recalled. 
Hertz theory for a ball-on-disc dry contact 
predicts a contact radius a and a maximum 
pressure pH such that: 
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where RB is the ball radius, L the applied 

normal load, (EB, ED) and (υB, υD) the Young 
modulus and Poisson ratio of the spherical-end 
and plane solid respectively. In the present EHL 
model, the elastic deformation due to contact 
pressure is computed over an equivalent cubic 
solid with an edge 60a long, as represented in 
Figure 1. By using equivalent material properties 
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for this solid (expressed later in this section), the 
total deformation of both solids B and D are 
calculated.  The hydrodynamic problem 
(Reynolds equation) is solved over a part of the 
upper surface of the cube (a square of edge 6a 
long). These dimensions have been established 
as the smallest ones above which the accuracy of 
the results remains unchanged. 
 
 

 
 
Figure 1. The geometries for the elastic 
deformation problem and, on one boundary, the 
lubricated contact The caption should be centered 
underneath the figure and set in 9-point font. 
 

• The hydrodynamic problem 
 

Assuming fully-flooded conditions, laminar 
flow, Newtonian rheology, smooth surfaces and 
isothermal, steady-state regime, the classical 
Reynolds equation can be written as a function 
of pressure p as: 
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with : 
 
- h the film thickness, expressed as: 
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 where u2(x,z) is the displacement of the 

equivalent solid in the y-direction, 
 
- ρ the density, varying with pressure according 

to the Dowson-Higginson relationship: 
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 where ρR is the reference density at ambient 

pressure, 
 
- η the viscosity, varying according to Roelands 

equation as: 
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where ηR is the reference viscosity, PR = 

1.96x108 Pa and 
ln( ) 9.67
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- Um being the mean entrainment velocity :  
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with UB and UD respectively the velocities of the 

two solids : the ball and the plane. 
 

Zero pressure boundary conditions are applied 
at the edges of the contact domain. 
 

• Elastic deformation 
 

The elastic deformation is calculated over an 
equivalent solid with Young modulus Eeq and 
Poisson ratio υeq being a composition of both 
solids B and D characteristics. When solids B 
and D are both made of the same material, the 
equivalent solid characteristics are simply: 
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The equations solved in the cubic volume 
represented in Figure 1 are: 
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with  
- σij representing the nine components of the 

stress tensor, 
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representing the strain matrix, 

(u1, u2, u3) being the displacements in the three 
directions of space (x1, x2, x3) = (x, y, z). 

Zero displacement boundary condition is 
applied to the bottom surface of the domain. In 
the contact region (where p satisfies Reynolds 
equation), the condition ( )22 yy pσ σ= = −  is 

applied. Zero stress boundary condition is 
applied to the other boundaries. 
 

• Load equilibrium 
 

The external load applied to the contact is 
totally supported by the lubricant film. 
Therefore, the equilibrium of forces requires that 
the total pressure generated in the contact 
domain S balances the external applied load L: 
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This equation is satisfied by adjusting h0, the 
constant parameter of the film thickness 
equation. This way, knowing the geometry, the 
materials and fluid characteristics, the load and 
velocities applied to the contact then the 
unknowns (the pressure field inside the contact, 
h0 and the deformation of the surfaces, and thus 
the film thickness) can be determined by solving 
the complete system of equations formed by (2), 
(8) and (9). 
 
3. Tips for Comsol implementation 

 
The implementation into Comsol 

Multiphysics environment is easy for the elastic 

problem with the classical Structure Mechanics 
box. As the Reynolds equation is not supported 
directly by Comsol, it has to be added with the 
PDE mode box. The Reynolds equation acts on 
the 2D surface (boundary) of the 3D deformable 
solid, so a weak form on boundary as to be 
specified. 

Lagrange quadratic elements for the elastic 
problem and Lagrange quintic elements for the 
Reynolds problem are chosen. The mesh can be 
extremely coarse for the elastic problem, but it 
has to be smaller than a tenth of the Hertzian 
contact radius a (see eq. (1)) to solve the 
Reynolds equation in the contact area.. 

For high pressure (as it is classically the case 
in EHL), stabilization techniques (SUPG, GLS 
and Isotropic Diffusion) have to be implemented 
(see [7]). 

Due to the diverging surfaces at the contact 
exit, negative pressures may arise (cavitation 
zone). To avoid this non realistic solution, a 
penalty method can be used to enforce the 
negative pressures to zero, as described in [9]. 

The load equilibrium (eq. (9)) can be 
implemented a smart way with Comsol, using an 
Integration Coupling Variable to be equal to a 
given constant with the help of the Global 
Equation toolbox. The corresponding unknown 
is h0, even if it does not appear explicitly in the 
equation. Be aware that this creates a null value 
on the matrix diagonal and prevents the use of 
iterative algorithms. 
 
4. Results  
 

This model allows the calculation of the 
pressure and lubricant film thickness distribution 
over the contact area. The technological interest 
is the comparison of the minimum film thickness 
and the roughness of the real surfaces in order to 
anticipate some potential direct interaction 
betweens the two surfaces, which can cause 
degradation of the system (wear, cracks 
propagation, etc.). A case study is proposed in 
this paper, which corresponds to the solids, 
lubricant and operating conditions described in 
Table 1. 
Qualitative results are shown in Figure 2, where 
the pressure and film thickness profiles are 
plotted (with dimensionless values). In EHL, the 
pressure distribution is very close to the Hertzian 
distribution but for the continuous increase at the 
inlet and a pressure spike at the outlet of the 



contact. The corresponding film thickness 
exhibit a quite constant value near the center of 
the contact, and a local minimum value is found 
at the outlet. 
 

Ball radius (R) 0.0127 m 
Ball speed (UB) 1 m/s 
Plane speed (UD) 1 m/s 
Load (L) 20 N 
Young modulus 
(ball and plane)(E) 

210 GPa 

Poisson ratio (υ) 0.3 
Viscosity (ambient) (η0) 0.012 Pa.s 
Pressure-viscosity 
coefficient (α) 

15 GPa-1 

 
Table 1. Calculation parameters (default values) 
 

 
 

Figure 2. Film thickness and pressure distribution 
(dimensionless) along axis x. 
 

For a quantitative comparison, we refer to 
Hamrock et al. [10] who predict central film 
thickness values as follows (these results were 
obtained with a curve fitting of finite-difference 
results in 1977): 
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In order to discuss the thickness increase with 
the power 0.67 on the mean velocity, we plot in 
Figure 3 a set of value given by our Comsol 
model, in log/log scale. The linear curve fit in 

Figure 3 shows a slope of 0.686 which is very 
close to the results from the literature. 
 

 
 

Figure 3. Parametric study of central film thickness 
(hc) value as a function of the mean velocity (Um), in 
log/log scale. 
 
7. Conclusions 
 

A new method is proposed in this paper in 
order to determine the lubricant film thickness 
between two solids in a lubricated contact. This 
parameter is of crucial importance to anticipate 
wear, fatigue, cracks, etc. Based on Comsol 
Multiphysics environment, the method benefits 
from the structural mechanics and PDE modes, 
as a non classical equation (Reynolds equation 
for lubrication) as to be solved on the boundary 
of the solids. The model is now able to easily 
include a wide range of physical effects like 
shear thinning of the lubricant or viscosity 
decrease due to friction heating. 
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