Boundary Conditions in Multiphase, Porous Media Transport Models

Amit Halder and Ashim K Datta

Biological and Environmental Engineering, Cornell University, NY

Goal

- Develop a fundamental based model which can
 - Simulate a number of processes (e.g., frying, baking, meat cooking, microwave, etc.)

Deep-fat Frying

Microwave heating

Baking

Grilling of meat

Exchange at the boundary

 \mathcal{UC}

Diffusive Flux

Blowing

Porous media

Surface

Frying time (min)

$$-D\frac{\partial c}{\partial x} + uc = h_m(c_v - c_{v0}) \qquad \text{OR} \qquad -D\frac{\partial c}{\partial x} + uc = h_m(c_v - c_{v0}) + uc$$

How to get the heat and mass transfer coefficients?

• Boundary layer assumption $(Re_L)^{1/2} >> 1$ (slenderness ratio) might not be satisfied.

• Therefore, the whole Navior-Stokes equation needs to be solved.

Only boundary conditions needed are

- Inlet air velocity
- Inlet air temperature
- Inlet air concentration
- Outlet pressure (ambient pressure)

Advantages of the conjugate model

- Gives the interface heat and mass fluxes
- Interface velocities

Same governing equations for both the domains with different properties

Maxwell Stefan diffusion equation (gives vapor and air concentration)

$$\frac{\partial(\phi\rho_g S_g \omega_v)}{\partial t} + \nabla \cdot (u_g \rho_g \omega_v) = \nabla \cdot \left(\phi S_g \frac{C_g^2}{\rho_g} M_a M_v D_{eff,g} \nabla x_v\right) + \dot{I}$$

$$\omega_v + \omega_a = 1$$

	Porous Media	Atmosphere
ϕ	potato	1
S_g	gas volume fraction (solved for)	1

Same governing equations for both the domains with different properties

Navior-Stokes equation (gives *u*, *v*, *p* of the gas phase)

$$\frac{\partial ((\phi S_i)\rho_i u_i)}{\partial t} + \nabla \cdot ((\phi S_i)^2 \rho_i u_i u_i) = -(\nabla P - \rho_i g) - (\phi S_i) \frac{\mu_i}{k_{r,i}^p k_{in,i}^p} u_i$$
$$\frac{\partial}{\partial t} (\phi S_g \rho_g) + \nabla \cdot \mathbf{n_g} = \dot{I}$$

	Porous Media	Atmosphere
$S_g \phi$	gas volume fraction (solved for)	1
$\frac{\mu}{k}u_i$	Darcy's term (solved for)	0

Simulate a microwave heating process Microwaves Insulated Porous Media Air flowing Symmetry (e.g., potato), over the surface Insulated Air Exits

Results

Temperature profiles after 5 minutes

Vapor mass fraction profiles after 5 minutes

Blowing velocities at the interface at different times

• Blowing velocity at the interface is 10³ times smaller than free stream velocity

Blowing velocities are not significant enough to affect h_m

Mass transfer coefficients for different air velocities

Average mass transfer coefficient is 3 times when velocity of air blowing the surface is decreased by 10 times.

Heat transfer coefficient

Similar results seen for heat transfer coefficient also. High values at the entry point and towards the exit, the value matches the boundary layer solution.

Conclusion

- Conjugate model developed which can
 - Solve processes without assuming any transfer coefficients at the boundary
 - Microwave heating is solved and h & h_m is estimated from the simulation.
 - ullet h and h_m calculated from the conjugate problem can be used in non-conjugate problem to give faster and accurate results
 - Demonstrates the transient effects of blowing on heat and mass transfer coefficients

Future work

- Conjugate problem for intensive heating processes
 - Higher heating rate therefore blowing is significant
- Conjugate problem for frying simulation where instead of air, there is hot oil outside
 - Challenges like huge density change at the boundary, vanishing of a phase in domain, turbulence needs to be answered in this model

Thank you.