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Abstract: Saint-Venánt general rod theory is
used to calculate the elastic factors of a section
through the numerical solution of a system
of partial differential equations. The elastic
properties so evaluated are used in a geometric
nonlinear analysis of 3D beam structures with
general cross-section to calculate some impor-
tant quantities such as the stiffness matrix.
Linear solutions, such as the Saint-Venánt one,
can be exploited in this context too due to
corotational strategies that allow the genera-
tion of objective nonlinear structural models
reusing the information gained from the lin-
ear ones by applying a corotational reference
frame that follows the rigid body motion of the
element or, as in a new approach called im-
plicit corotational [5], of the continuum point
or of the beam section. A series of tests re-
garding 3D beam analysis are presented and
comparisons with the results obtained using
commercial codes such as ABAQUS show the
simplicity and accuracy achieved with the pro-
posed formulation.

Keywords: Saint-Venánt rod theory, Elastic
factors of a beam cross-section.

1 Introduction

Saint-Venánt (SV) rod theory represents a
powerful theoretical basis for the study of slen-
der bodies subjected to general loading condi-
tions. This classical elastic problem still at-
tracts numerous researchers, principally be-
cause all kinds of rod analyses, when described
as one-dimensional bodies, require the prelim-
inary evaluation of the elastic properties of
the cross-section. While the axial and bend-
ing factors can be easily obtained, the descrip-
tion of the torsional and shear behavior re-
quire the solution of a set of 2D Laplace dif-
ferential equations on the section domain with
Neumann boundary conditions.

The aim of this work is the calculus of the
elastic properties of beams with general cross-
sections extending the approach proposed by

Petrolo and Casciaro in [3] to the evaluation
of all the coefficients required by the geometric
nonlinear analysis of 3D beam structures.

The reuse of classical linear elastic solu-
tions, such as the SV one, in the nonlinear
context is possible due to the well known coro-
tational strategy (CR) or to the more recent
proposal of the implicit corotational method
(ICR) [5]. The latter, in particular, appears
to be very attractive due to the possibility of
completely reusing the available linear mod-
els, as a basis for generating appropriate non-
linear ones. Today the great majority of non-
linear beam models are based on the so called
geometric exact theories such as those devel-
oped by Reissner [7], Antmann [1] and Simo
[8]. These models use direct assumptions of
constitutive laws in terms of stress/strain re-
sultants and simplified kinematics and static
hypothesis. Models so generated are geomet-
rically exact, that is exactly frame–invariant,
but often lack the richness of the 3D solution
by omitting important details covered by the
linear 3D solution of the same model. This is
evident, for example, in the classical Antman–
Simo nonlinear beam model where the sim-
plified elastic constitutive law assumed misses
the correct shear/torsional coupling present
in the 3D Saint Venánt linear solution [6] or
more subtle nonlinear couplings such as the
axial-torsional 2nd–order coupling identified
by Wagner [9]. On the contrary, corotational
strategies recover all the effort spent in devel-
oping linear theories such as for example the
SV one in the nonlinear context and then over-
come the inconvenience deriving from separate
ad hoc derivations of their nonlinear version.
This possibility could be exploited at the fi-
nite element level (CR) or, as recently pro-
posed in [4, 5], at the continuum description
level (ICR). In the first case, each element is
referred to a local frame that moves with the
element to filter a great amount of its rigid
motion, while ICR applies the corotational de-
scription to the neighbor of each continuum
point (or to the cross-section in the case of
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beam structures): in a suitable corotational
reference frame, linear stress and strain mea-
sures can be assumed as the Biot nonlinear
ones. In this way, a standard methodology to
obtain a frame–invariant nonlinear modeling
able to maintain all the richness of the embed-
ded linear theory could be derived.

The paper is organized as follows:
section 2 contains an essential overview

of the axial and shear stress distribution on
the cross-section domain derived from Saint-
Venánt assumptions. The latter are defined
through three functions ψj that solve the
Laplace differential equation for different Neu-
mann boundary conditions;

section 3 shows how the elastic factors can
be derived once these functions are known by
defining the complementary strain unitary en-
ergy;

section 4 discusses the procedure followed
to calculate the torsional and shear factors.
The modulus COMSOL Multiphysics - PDE
was used;

section 5 presents the results of some nu-
merical tests performed to show both the re-
liability and the accuracy achieved with the
proposed formulation. Two groups of tests are
proposed: in the first one the cases of a rect-
angular section, a trapezoidal compact section
and a bridge section are considered to compare
the elastic factors calculated with the available
reference values, while in the second one the
compliance operators obtained through COM-
SOL are used in the nonlinear analysis of 3D
beam structures. The equilibrium-paths are
compared with those obtained using the com-
mercial code ABAQUS.

Final comments and remarks are given in
section 6, while appendix A deals with the
principal shear system.

2 The stress distribution

Let’s consider a cylindrical Cauchy isotropic
body subjected to surface loading on its end
sections, as shown in figure 1. The cylinder is
referred to a local barycentric Cartesian sys-
tem {x, y, z} oriented according to the princi-
pal directions of the cross-section and we de-
note with A the cross-section domain in the
{x, y} plane, Γ its contour and nx, ny the
components of the external normal n. Saint-

Venánt assumptions imply

σxx = σyy = τxy = 0

.
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Figure 1: Saint-Venánt cylinder.

The stress field can be expressed in the
form

σzz = Dσtσ , τ =

{
τxz

τyz

}
= Dτ tτ , (1)

where

tσ =



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Mx[z]
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
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, tτ =
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Ty

Mz


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,

Dσ =
[
1/A, y/Jx, −x/Jy

]
,

Dτ =
[
dx, dy, dz

]
.

(2)

N , Tx, Ty are the normal and shear forces,
Mx[z], My[z], Mz the bending couples and the
torque on the cross-section of area A and bend-
ing moments of inertia

Jx =
∫

A

y2 dA , Jy =
∫

A

x2 dA .

Vectors dx, dy, dz are defined as




dx = ∇ψx − bx − rxdz

dy = ∇ψy − by − rydz

dz = (∇ψz − bz)/rz

(3)

∇ is the gradient operator in the {x, y} plane,
so that

∇ψj =





∂ψj

∂x
∂ψj

∂y





, j = x, y, z,



while

bx =
1

2 Jy

{
x2 − ν̄y2

0

}
,

by =
1

2 Jx

{
0

y2 − ν̄x2

}
,

bz =
1
2

{
y

− x

}
,

(4)

rj = 2
∫

A

{bj −∇ψj}T
bzdA , j = x, y, z.

(5)
Finally ν̄ = ν/(1 + ν) depends on the Poisson
coefficient ν of the material.

Functions ψj [x, y] have to satisfy the dif-
ferential problems:





∂2ψj

∂x2
+

∂2ψj

∂y2
= 0, {x, y} ∈ A

∂ψj

∂x
nx +

∂ψj

∂y
ny = bT

j n, {x, y} ∈ Γ
(6)

A detailed discussion of the Saint-Venánt
problem with a complete proof of the expres-
sions given is available in [3] or [2].

3 Cross-section flexibility matrixes

In [3] the elastic properties of the cross-section
are defined by introducing the unitary energy

∂φ

∂z
=

1
2E

∫

A

σ2
zz dA +

1
2G

∫

A

τT τ dA (7)

E being the Young modulus and G =
E

2(1 + ν)
the tangential elasticity modulus of the mate-
rial.

Equations (1) and (2) can be introduced in
the energy expression (7) which gives

∂φ

∂z
=

1
2E

tT
σ Hσtσ +

1
2G

tT
τ Hτ tτ , (8)

being the global strengths acting on the cross-
section independent from x and y.

Symmetric matrixes Hσ and Hτ intro-
duced in equation (8) can be calculated as

Hσ =
∫

A

DT
σ Dσ dA , Hτ =

∫

A

DT
τ Dτ dA

(9)
and have components

Hσ = diag

[
1
A

,
1
Jx

,
1
Jy

]

Hτij =
∫

A

dT
i dj dA.

(10)

In the case of symmetric cross-sections, Hτ is
a diagonal matrix and its components provide
the shear and torsional factors A∗x, A∗y, Jt used
in technical applications directly:

Hτ = diag

[
1

A∗x
,

1
A∗y

,
1
Jt

]
, (11)

while in the hypothesis of general cross-section
we need to introduce the shear principal sys-
tem to calculate the shear and torsional fac-
tors. This operation is, however, not difficult,
once the coefficients Hτij are known (more de-
tails are available in Appendix A).

4 Use of COMSOL Multiphysics

The modulus COMSOL Multiphysics - PDE
was used to solve the problems (6) and calcu-
late the integrals (9) on the cross-section do-
main. In particular the following quantities
are defined:

• A 2D geometry in which x and y are the
independent variables;

• Quantities ν and ν̄ as constants;

• The three terms bT
j n as Boundary Ex-

pressions;

• Quantities useful to obtain the area and
the bending moments of inertia and the
expressions of rj between the Integration
Coupling Variable on the domain;

• The components of vectors dj and the
dot products dT

i dj on the domain;

• The three differential Laplace equations
for the domain and the Neumann condi-
tions for the contour;

• A mesh for the domain using Lagrange-
Quadratic elements.

Having solved the problems (6), the Postpro-
cessing menu is very useful to evaluate the in-
tegrals Hτij .

The elastic compliance matrixes Hσ and
Hτ so evaluated are a good approximation of
the nonlinear compliance operators (see [4, 5]),
used in the analysis of structures undergoing
large displacements and rotations but small
strains, when a suitable corotational reference
system or a suitable stress definition is chosen.



5 Numerical Results

5.1 Validation tests

Three tests are presented relating to the rect-
angular, the trapezoidal and the composed
sections in figures 2, 3 and 4 in order to show
the performances of the proposed formulation
in the evaluation of the elastic factors.

In the first case the numerical values of
kx =

A

A∗x
, ky =

A

A∗y
, kt =

Jp

Jt
, Jp being the

polar inertia, are in perfect agreement with
the available analytical values (kx = ky = 6/5
for ν = 0 and kt = 1.82204 for any ν ).

For the trapezoidal and the bridge sections
proposed, the flexural systems indicated in red
are defined by d1 = 1.8571, d2 = 1.2857, α =
1.1695 rad and d = 2.1552 respectively. They
do not coincide with the shear systems indi-
cated in blue. The numerical results obtained
(tables 2 and 3) agree with those proposed
in [3] where different discretization strategies
have been investigated.
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Figure 2: Rectangular cross-section.

ν = 0.0 ν = 0.3 ν = 0.5
kx 1.2000 1.2748 1.3561
ky 1.2000 1.2006 1.2012
kt 1.8220

Table 1: Rectangular section.
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Figure 3: Trapezoidal cross-section.

ν = 0.0 ν = 0.3 ν = 0.5
kx 1.3468 1.3771 1.4100
ky 1.1841 1.1856 1.1871
kt 1.6481
xc 0.0091
yc 0.2429

αt(rad) -0.0996 -0.0847 -0.0729

Table 2: Trapezoidal compact section.
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Figure 4: Bridge section.

kx ky kt yc

1.6686 4.3291 4.4489 -0.5863

Table 3: Bridge section (ν = 0.3).

5.2 Comparison tests

The tests regard the cantilever beams whose
geometry and elastic modula are reported in
figures 5 - 8. In the first case a lateral force
λ is applied at the centroid of the edge of the
beam, while the second cantilever is subjected
to the axial load λ also applied at the cen-
troid of the edge with a lateral imperfection
ελ. ε was assumed to be 0.001. COMSOL was
used in performing the calculus of the compli-
ance operators Hσ and Hτ for the C-shaped
and the asymmetric cross-sections of the can-
tilevers required in the analysis of the 3D beam
as proposed in [5]. The two tests confirm the
accuracy of that beam model in thin walled
structure analysis through a comparison with
the results furnished by ABAQUS where the
cantilevers were modeled as plate-assemblages.
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Figure 5: C-shaped beam under shear force:

geometry and equilibrium path. Axial
displacement uz at the edge of the beam.
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Figure 6: C-shaped beam under shear force:
geometry and and equilibrium path. Lateral
displacement ux at the edge of the beam.
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Figure 7: Asymmetric cross-section beam under
axial force: geometry and and equilibrium path.
Axial displacement uz at the edge of the beam.
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Figure 8: Asymmetric cross-section beam under
axial force: geometry and and equilibrium path.
Lateral displacement ux at the edge of the beam.

6 Conclusion

The possibility to evaluate the beam section
elastic compliance matrixes in a simple way
and reuse these quantities for the nonlinear
analysis of 3D beams gives a series of advan-
tages with respect to the classical beam mod-
els that use a simplified elastic law on the sec-
tion and allows a complete and accurate re-
covery of the rich linear solution in a nonlinear
context.

In [5] a 3D nonlinear beam model is derived
from Saint-Venánt rod theory and a mixed
finite element with a separate interpolation
for section strengths and displacements is pro-
posed. The comparisons performed confirm its
reliability and accuracy: the numerical results
obtained in the analysis of systems constituted
by slender beams agree with those furnished
by more complex structural modelings such
as the shell one. Furthermore, in ABAQUS
only a path-following approach is used while
the proposed beam element is introduced in an
asymptotic background of FEM analysis that
offers numerous advantages such as the neg-
ligible extra-cost in performing imperfection
sensitivity analysis.

Appendix A: The shear system

In the case of general cross-section, the shear
stress energy is written in the more usual tech-
nical form



∂φT

∂z
=

1
2G

{
T̄ 2

x

A∗x
+

T̄ 2
y

A∗y
+

M̄2
z

Jt

}
, (12)

where

T̄x = Tx c + Ty s,

T̄y = −Tx s + Ty c,

M̄z = Mz + Tx yc − Ty xc

(13)

are the principal components of shear strength
and the torsional moment referring to the
shear center of coordinates

xc = −Hτ23

Hτ33
, yc =

Hτ13

Hτ33
. (14)

c and s are the cosine and the sine of the de-
viation angle αt between shear and flexural
systems that can be calculated by using the
relation

tan (αt) =
c2 − c1 +

√
c2
2 − 2c1c2 + c2

1 + 4c2
3

2c3
,

(15)
where

c1 = Hτ11 − 2Hτ13 yc + Hτ33 y2
c ,

c2 = Hτ22 + 2Hτ23 xc + Hτ33 x2
c ,

c3 = Hτ12 + Hτ13 xc −Hτ23 yc −Hτ33 xcyc.
(16)

The expressions furnished can be obtained
by writing the shear forces and the torque re-
ferring to the principal system of the cross-
section as a function of T̄x, T̄y, M̄z as follows:

tτ = T t̄τ , (17)

with

T =




c −s 0
s c 0

s xc − c yc s yc + c xc 1


 ,

t̄τ =





T̄x

T̄y

M̄z





.

(18)

The shear contribution to the unitary energy
(8) is then

∂φT

∂z
=

1
2G

t̄
T
τ H̄τ t̄τ , (19)

where
H̄τ = T T HτT . (20)

Equation (19) is equal to (12) if H̄τ is a diag-
onal matrix: the conditions of independence
of the shear forces and the torque (H̄τ13 =
H̄τ23 = 0) furnish the shear center coordi-
nates, while the angle αt can be obtained by
imposing the independence between T̄x and T̄y

(H̄τ12 = 0). Finally, the diagonal terms allow
the calculation of the necessary shear and tor-
sional factors. They are

A∗x =
1

c1 c2 + c2 s2 + 2 c3 c s

A∗y =
1

c1 s2 + c2 c2 − 2 c3 c s

Jt =
1

H33
,

(21)
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