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Abstract: A generalized model to predict dynamic 
crack propagation in fiber composite structures is 
proposed. The proposed approach is based on a 
generalized formulation based on the Fracture 
Mechanics approach and Moving mesh 
methodology. Consistently to the Fracture 
Mechanics, the crack propagation depends from 
the energy release rate and its mode components, 
which are calculated by means of the 
decomposition methodology of the J-integral 
expression. The geometry variation, produced by 
the crack advance, is taken into account by 
means of a moving mesh strategy based on the 
Arbitrary Lagrangian-Eulerian formulation. The 
governing equations are solved numerically by 
using Comsol Multiphysics. Comparisons with 
experimental results are reported to validate the 
proposed modeling.   
 
 
Keywords: composite materials, delamination 
phenomena, ALE formulation, energy release 
rate 
 
1. Introduction 
 
 The simulation of propagating cracks in 
materials is essentially complex in nature, since 
many phenomena affect the crack growth, such 
as high speed crack propagation and multiple 
cracks with branching mechanisms. During the 
last decades many efforts have been made to 
analyze dynamic fracture behavior, giving rise to 
several studies devoted to predicting crack 
growth phenomena [1]. In the framework of 
composite structures, most research efforts were 
confined to static or low velocity crack 
propagation whereas dynamic delamination 
phenomena are not completely investigated.  
Indeed, a brief review of the literature denotes 
that many papers are concerned to analyze the 
main features of crack growth, neglecting a 
priori the inertial contributions arising from fast 
propagating phenomena. In this paper, the 
structural modeling is developed by means of a 
finite element formulation based on a plane 
stress behavior, whereas the crack growth is 
predicted by a Fracture Mechanics approach. In 

order to simulate the dynamic crack growth, the 
proposed modeling utilizes a fracture toughness 
criterion based on the energy release rate (ERR) 
and the corresponding mode components. The 
ERR is evaluated by means of the decomposition 
methodology of the J-integral expression, which 
is proposed in the framework of the dynamic 
crack propagation [2]. The change of the 
geometry, produced by a crack advance, is taken 
into account by means of a moving mesh 
strategy based on an Arbitrary Lagrangia-
Eulerian (ALE) formulation, based on Winslow 
regularization technique.  
 
 
2. Formulation of the Damaged Model 
 

The general formulation of the structural 
model is consistent to a 2D plane stress 
approach, in which the behavior of each lamina 
is homogeneous, linear and elastic (Fig.1). 

In order to reproduce multilayered laminate, 
the general model is based on the assemblage of 
2D layer connected by the interfaces (Fig.1a) In 
particular, at the interface plane in which 
delamination occurs the crack faces are subjected 
to contact spring model to avoid compenetration 
effects during the crack motion. Moreover, at the 
interfaces not affected by interfacial cracks, 
constrain equations are introduced to reproduce 
continuity condition in the displacement fields 
(Fig.1b). It is worth noting that the interfacial 
defects are assumed to propagate along the 
interfaces between the laminas, which are 
basically weak planes, in which the delamination 
defects are able to growth, producing high 
stiffness and strength reduction [3]. This 
assumption can be motivated from physical point 
of view, since many experimental observations 
have shown that the evolution of such interfacial 
defects (known as delaminations) proceeds along 
a prescribed path almost fixed in the interface 
zones, leading to measured crack speeds ranging 
also in the framework of intersonic crack 
propagation.  

In order to reproduce the geometry changes 
in the continuum, plane stress and ALE 
formulation are defined in the same reference 
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mesh. Moreover, the motion of the crack is 
expressed as a function of an explicit criterion 
written in terms of crack tip speed and ERRs 
mode components.  
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Figure 1. a) Schematic illustration of  the delaminated 
model subjected to general loading. b) Compatibility 
conditions at the interfaces. 

 
The dynamic energy release rate (ERR) is 
calculated by using the J-integral concept [4], 
evaluated on a contour surrounding the crack tip. 
In the case of a mixed mode loading condition, 
the ERRs components are expressed by means 
the decomposition technique as follows[2]: 
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where, u


is the displacement, t


the traction 

vector, f


is the body force, 


is the volume 

density, W is the strain energy density and K is 
the kinetic energy and the superscripts (S) and 
(AS) in Eq.(1) represent the symmetric and 
antisymmetric components with respect to the 
crack tip plane.  
 In order to evaluate the crack growth 
phenomenon, a fracture criterion based on the 
crack tip variables should be introduced. From 

experimental point of view, several observations 
have shown that the crack growth is strictly 
dependent from the instantaneous crack tip speed 
[2, 6]. In the proposed modeling, the crack 
criterion is based on a logarithmic three 
parameters evolution law. In particular, it 
depends for low range of the crack tip speed on 
an initial value of the ERR, which is, typically, 
close to the initial crack toughness of the 
material. Moreover, as far as the ERR grows the 
crack tip speed reaches asymptotically the 
Rayleigh wave speed of the material, namely 

RV . 

Therefore, fracture toughness is assumed to be 
governed by a mixed mode crack tip criterion, 
solving the following equation for the crack tip 
speed as far as it is equal to zero: 
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where m is a material parameter predicting 
the evolution on the speed range and tc is the 

speed of the crack tip,  0 0,I IIG G correspond to 

the initial mode components toughness.  
 
3. Governing Equations for Laminated 
Structures and ALE formulation 
 
The governing equations in the material 
configuration can be written by means of the 
principle of virtual works of inertial, external and 
internal forces: 
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where i=1,nl represent the number of layers of 
the laminates, n


 is the unit normal vector, if


 is 

the volume forces vector, i


is the Lagrange 

multipliers traction forces vector of the i-th 
interface Cauchy stress tensor, dV and dA  are 
the volume and the loaded area in the material 

configuration,  ,i iV  are the volume, the area 

of the laminate and  ,i i
UD D   are the 

undelaminated and the delaminated areas. The 



governing equations are completed by a weak 
statement of displacement continuity at the 
interfaces in which perfect adhesion occurs: 
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with 1 2
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 is the Lagrange multiplier 

vector, 1 1
1 1 2 2

iT i i i iu u u u u      
 are the 

relative displacements prescribed to be equal by 
continuity requirements and in


is the normal 

vector of the undelaminate area 
Consistently to ALE formulation, the motion 

of the body is described in the referential 
configuration and thus Eq.(3), should be 
reformulated to take into account for the 
transformation rule between Lagrangian and 
referential coordinate systems. According to 
ALE formulation, the time derivatives of a 
generic physical field, in referential and material 
configurations can be related by the following 
relationship [5]: 
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where X


 represents the relative velocity of the 

grid points in the material reference system. 
Moreover, in those cases in which gradient 
operators are involved, the transformation rules 
from the material and referential configurations 
require the evaluation of the Jacobian (J) by 
means of the following relationship: 
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Substituting Eq.(5)-(6) into Eq.s(3)-(4) the 
governing equations in the referential 
configuration are determined. 

In the framework of ALE formulation the 
computational mesh may moves arbitrary with 
respect to the material body. In particular, the 
mesh movements should be addressed to reduce 
distortions of the mesh elements and to handle 
for changes of the geometry produced by the 
crack growth. In the proposed formulation, a 
smoothing variational method based on Winslow 
approach is utilized, in which the horizontal and 
vertical mesh displacements of the generic i-th 
lamina are evaluated by solving the following 
expressions: 
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Internal and external boundary conditions 
need to be introduced to reproduce the crack 
growth. Weak forms of smoothing differential 
equations are derived, by multiplying Eq.s 
Error! Reference source not found. by a 
weight functions  1 1 2, ,iw X X   2 1 2,iw X X  and 

then integrating by part. Moreover, the boundary 
conditions regarding the prescribed crack tip 
speed, i.e. 
Eq.Error! Reference source not found..3, is 
taken into account for by means of non-ideal 
weak constraint based on the Lagrangian 
multiplier method. Therefore, the resulting 
equations regarding the ALE formulation are: 
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where  1 2,iTw w w
  

is the weight function 

vector,  1,0


Tk is the propagation direction 

vector of the interfacial crack,  ,0


iT
t tc c is the 

crack tip speed vector,  det J  is the determinant 

of a scalar metric representing the ratio of 
differential length, I


 is the identity 2x2 matrix. 

 
4. Finite Element Approximation 

 
Governing equations given by Eq.(8) and 

Eq.(12) with boundary conditions described by 
Eqs.(10) introduce a non linear set of equations, 
which have been solved numerically, using a 
user customized finite element program 
COMSOL Multiphysics TM version 3.5. It is 
worth noting that since second order time 
derivative of the variables involved in the main 
equations are not provided in the ALE 
application mode, customized version of these 
relationships are implemented.  

Finite element expressions are written for 2D 
plane stress modeling, utilizing Lagrangian 
interpolation shape functions. The governing 
equations regarding the plane stress and the ALE 
formulations are solved by using a finite element 
isoparametric approach. The algebraic equations 
are solved by using an implicit time integration 
scheme based on variable-order variable-step-
size backward differentiation formulas (BDF). 
During the time integration, due to the fast 



speeds involved in the crack advance, a small 
time step size is utilized. In order to compute 
accurately the ERR with the aid of J-integral 
formulas, a fine discretization meh and a 
standard numerical integration method 
(quadrature) is adopted on the contour line and 
on the area surrounding the crack tip. The time 
integration procedure at each iteration step 
checks the crack advance criterion . In the case it 
is satisfied a prescribed crack speed, evaluated 
by solving the crack criterion, is applied to the 
crack tip area and thus moving boundary 
conditions are applied at the crack front. In order 
to avoid mesh distortions in the crack tip region 
and lost of accuracy in the evaluation of the 
crack tip solution, a remeshing algorithm is need. 
The remeshing procedure is performed by using 
COMSOL finite element program, by checking 
that the minimum value of the mesh quality 
parameter regarding the geometry of the element 
in the undistorted configuration should be greater 
than a fixed tolerance. Once this condition is not 
satisfied, a remeshing procedure is performed on 
the basis of the deformed geometry in the actual 
reference system and a restart with an updating 
procedure from the previous converged time step 
is developed (Fig.2). 
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Figure 2. Flow chart of the FEM integration 
algorithm. 
 
 

5. Results 
Comparisons with experimental results are 
performed to validate the proposed modeling for 
mode I and mixed mode loading conditions. A 
double cantilever beam (DCB) specimen, under 
mode I loading condition is analyzed [6]. The 
material tested is AS 3501-6 Graphite/Epoxy, the 
laminate is formed by unidirectional laminas and 
the specimen is 260mm long, 20mm wide and 
3.7mm thick. The material properties and 
parameters regarding the crack criterion are 
reported in Tab.n.1.The loading rate at the left 
end points is 0.1 mm/s, whereas the crack 
propagation is produced introducing a strip of 
adhesive film at the crack tip, which enforces the 
crack to growth at high speeds.  
 


Mpa


Mpa
G G

Mpa 
Kg/m3 12=13 

 
m 
 

G

 

142E3 10.3E3 7.2E3 1580 0.27 0.5 300

Tab.1. Mechanical properties of unidirectional fiber-
reinforced AS4 graphite epoxy. 

 
In order to reproduce correctly the 

experimental results, at first the laminate ends 
are displaced statically to an initial value of 
ERR, leaving the crack tip fixed in the initial 
position. It is worth noting that since the 
relationship between crack tip speed and ERR 
toughness is not provided in the experimental 
results, the material parameters, involved in the 
definition of the crack criterion, are taken as 
adjustable variables.  

The FE model involve in the computation 
50000 variables and On a Dual Core processor at 
2500Mz the CPU time required for performing 
the time history for each case was approximately 
10 min. In Fig.3 the mesh model and with a 
particular of the integration path surrounding the 
crack tip is reported.  

In Fig. 4 comparisons with experimental 
results, in terms of time history of the crack tip 
displacements are reported. The agreement 
between proposed and experimental results is 
noted. In Fig. 5, the evolution of the strains and 
kinetic energies and the energy expended in the 
crack growth are also reported. Moreover, the 
crack tip speed reaches his maximum value 
especially during the initiation phase with value 
comparable to the ones of the material wave 
characteristic. 

In order to analyze the crack tip motion in 
Fig.6, results concerning the crack tip motion for 



different time steps are reported. It is worth 
noting that only the small region surrounding the 
crack tip require an accurate discretization of the 
mesh size, since the mesh motion is enforced to 
evolve during the crack propagation rigidly,  
avoiding as a result distortions of the crack tip 
region. 

 
 

 
 
 
 

Figure 3. Mesh model and discretization of the crack 
tip region 

 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.1

0.2

0.3

0.4

0.5

0.6

 

h
h

a

L

B

u

u

a/L=0.367, h/B=0.1, m=0.5, 
G

0
/G

st
=0.3, mm/s

 Experimental data
 Proposed model

X
(a

)/
L

tL

0.0 0.3 0.6 0.9 1.2 1.5
0.00

0.05

0.10

0.15

0.20

 
Figure 4. Mode I dynamic crack growth in a DCB 
scheme. Comparison between experimental data and 
proposed results: time history of the crack tip 
displacement X. 
 
7. Conclusions 
A  general model based on Fracture Mechanics 
and ALE formulation is proposed. The analysis 
is developed in an unsteady dynamic crack 
propagation, in which the influence of time 
dependence and the inertial forces are taken into 
account.  The moving mesh strategy combined 
with a Fracture Mechanics approach is able to 
predict properly the time dependent behavior of 
delamination phenomena. The proposed 

modeling is based on a generalized mixed mode 
dynamic fracture toughness criterion, which 
depends on a limited number of adjustable 
variables. Comparisons with experimental results 
for loading conditions involving mode mix at 
high speeds of the crack tip are proposed. 
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Figure 5. Mode I dynamic crack growth in a DCB 
scheme. Time history of the strain energy, kinetic 
energy and crack tip speed. 

 
Figure 2. Crack-tip propagation. 
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