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What are fuel cells?

• Electrochemical 

devices that convert 
the chemical energy of 

reactants directly into 

electricity and heat

Image: US Fuel Cell Council

• Oxidation and reduction 
physically separated and 
charge carriers forced to 
take separate paths
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The structure of a PEM fuel cell
Polymer electrolyte membrane 

and thin film electrodes, 

~40 µm
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The structure of a PEM fuel cell
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The structure of a PEM fuel cell
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The structure of a PEM fuel cell

Gas diffusion layers, 
carbon paper or cloth, 

~300 µm

Polymer electrolyte membrane 
and thin film electrodes, 

~40 µm

Gaskets

Flow field plates

Current collectors

End plates

Clamping bolts

…and the rest
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Significance of compression

• Low contact pressure 
increases electrical and 
thermal contact resistance

• High contact pressure hinders 
mass transfer resistance due 
to loss of porosity

�Finding optimal compression 
is a balancing act!

• The pressure distribution is 
rarely uniform

– On millimeter scale

• Ridge-channel structure

– On larger scale

• Clamping from the edges

Cell cross section view

Flow field plate

Gas diffusion layer
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Background and goals

• Measuring compression pressure distribution is 

laborious and can be done only close to room 
temperature

• Modeling provides a faster and cheaper way to 

predict the pressure distribution

– Provided that a valid model and material parameters are 
available

• We have a model for that!

• Here, we demonstrate

– A method to even out the pressure distribution

– The effect of temperature on the pressure distribution
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The physics

• Solid, Stress-Strain application mode
– Isothermal, linear elasticity, isotropic materials
– Input measured Young’s moduli and Poisson’s ratios
– Solved for displacement field u

• Boundary conditions
– Clamping force as a area load around the bolt holes
– Symmetry conditions where applicable
– A contact pair condition between rigid components
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The model

• Model geometry fashioned after an existing fuel cell stack
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Model subdomains

Equalization layer 

(fluoropolymer)

Current collector 
(graphite)

Flow field plate 
(graphite)

Areas or clamping 

bolt washers

End plate 

(reinforced PPS)
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The mesh
• ~200k tetrahedral mesh elements

• ~420k degrees of freedom, 

• ~4 h solution time with PARDISO 
solver on an Intel Core 2 Quad 
Q9550 + 8 GB RAM
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Modeled case 1

The effect of the pressure equalization layer

• A 5 mm fluoropolymer layer 

between the end plate and 

current collector evens out 
the variations in clamping 

force

• The equalization layer is 

much softer than the other 
components

Equalization layer
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Modeled case 1

The effect of the pressure equalization layer

Without equalization layer With equalization layer

Pressure unit: bar

Pressure distribution on the flow field plate surface
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• Young’s moduli depend on temperature
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At 23 °C At 160 °C

Pressure unit: bar

Modeled case 2

The effect of temperature

Pressure distribution on the flow field plate surface
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Conclusions

• Thermal expansion is not significant at these 

temperatures

• The equalization layer really makes a difference!

• Uniformity of pressure distribution at assembly 

temperature not enough!

– Softening of cell components with increasing 
temperature leads into more uneven pressure 
distribution

• This model can be used for optimizing clamping 

systems also for high temperature fuel cells 

provided that material data is available
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Bonus slide 1: Geometry details

The geometry of the pressure 
equalization layer

Force per bolt in kN.

Clamping force scheme
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Bonus slide 2: The effect of the 

contact pair boundary condition

Without contact pair With contact pair

Pressure unit: bar




