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Abstract: We use COMSOL Multiphysics
for solving distributed optimal control of un-
steady Burgers equation without constraints
and with pointwise control constraints. Using
the first order optimality conditions, we apply
projection and semi-smooth Newton methods
for solving the optimality system. We have
applied the standard approach by integrating
the state equation forward in time and the ad-
joint equation backward in time using gradi-
ent method. We also consider the optimality
system in the space-time cylinder as an ellip-
tic equation and solve it adaptively. Numeri-
cal results computed by the gradient method,
adaptive and non-adaptive elliptic solvers of
COMSOL Multiphysics are presented for both
the unconstrained and the control constrained
cases.
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1 Introduction

Burgers equation plays an important role in
fluid dynamics as a first approximation to
complex diffusion convection phenomena. It
was used as a simplified model for turbulence
and in shock waves. Analysis and numerical
approximation of optimal control problems
for Burgers equation are important for the de-
velopment of numerical methods for optimal
control of more complicated models in fluid
dynamics like Navier-Stokes equations.

Recently, several papers appeared dealing
with the optimal control of Burgers equa-
tion. A detailed analysis of distributed and
boundary control of stationary and unsteady
Burgers equation and the approximation of
the optimality system with augmented La-
grangian SQP (sequential quadratic program-
ming) method are given in [9]. In [7], the

SQP, primal-dual active set and semi-smooth
Newton methods are compared for distributed
control problems related with the stationary
Burgers equation with pointwise control con-
straints. Distributed control problems for un-
steady Burgers equation with and without
control constraints are investigated numeri-
cally using SQP methods in [1, 8, 10]. Dif-
ferent time integration methods like implicit
Euler and Crank-Nicholson methods were con-
sidered for solving the adjoint equations aris-
ing by optimal control of unsteady Burger
equation in [3]. In contrast to linear parabolic
control problems, the optimal control prob-
lem for the Burgers equation is a non-convex
problem with multiple local minima due to
nonlinearity of the differential equation. Nu-
merical methods can only compute minima
close to the starting points [8].

Parabolic optimal control problems with
and without constraints were solved using
COMSOL Multiphysics [4, 5, 6]. In this paper,
we present numerical results for distributed
optimal control of unsteady Burgers equation
without and with control constrains. We fol-
low the function based ” first optimize then
discretize ” strategy which allows to apply dif-
ferent optimization techniques for solving the
optimality conditions.

For the approximative solution of the equa-
tions in the optimality systems, we use the
classical approach of sequentially solving the
state and the adjoint equations by the gradient
method, interpreting the time as an additional
space dimension and solving the elliptic PDE
that contains the whole optimality systems by
COMSOL Multiphysics like in [4, 5, 6].

We summarize first the existence and unique-
ness of solutions of the unsteady Burgers equa-
tion following [8, 11]. Given Ω = (0, 1) and
T > 0, we define Q = (0, T ) × Ω and Σ =
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(0, T ) × ∂Ω. Let H = L2(Ω) and V = H1
0 (Ω)

be Hilbert spaces. We make use of the follow-
ing Hilbert space:

W (0, T ) = (ϕ ∈ L2(0, T ; V ); ϕt ∈ L2(0, T ); V ∗),

where V ∗ denotes the dual space of V . The
inner product in the Hilbert space V is given
with the natural inner product in H as

(ϕ,ψ)V = (ϕ′, ψ′)H , for ϕ,ψ ∈ H.

The expression ϕ(t) stands for ϕ(t, ·), consid-
ered as function in Ω only when t is fixed.
We consider the unsteady viscous Burgers
equation

yt + yyx − νyxx = f + bu in Q (1)

with homogenous Dirichlet boundary condi-
tions

y(t, 0) = 0 on Σ

and with the initial condition

y(0) = y0 in Ω

where f ∈ L(Q) be a fixed forcing term,
ν = 1

Re > 0 denotes the viscosity parameter
and Re is the Reynolds number. The location
and intensity of the controls u ∈ L2(Q) are
expressed by the function b ∈ L∞.

For the unsteady Burgers equation (1) with
the corresponding initial and boundary condi-
tions there exists a weak solution y ∈ W (0, T )
satisfying

< yt(t), ϕ >V ∗,V +ν(yt(t), ϕ)V

+ (y(t)yx(t), ϕ)H = ((f + bu)(t), ϕ)H

or all ϕ ∈ V, and t ∈ [0, T ], and (y(0), χ)H =
(y0, χ) for all χ ∈ H.

2 Optimal control of Burgers
equations without inequality
constraints

The distributed control problem for Burgers
equation without inequality constraints and
with homogeneous Dirichlet boundary condi-
tions can be stated as follows [8]:

min J(y, u) =
1
2
‖y − yd‖2Q +

α

2
‖u‖2Q

s.t. yt + yyx − νyxx = f + bu in Q,
y = 0 on Σ,

y(0) = y0 in Ω,

with the regularization parameter α > 0.
Here, y and u denote the state and control
variables, yd is the desired state.

In order to show the existence of the optimal
solutions, the operator e : X → Y is intro-
duced by

e(y, u) = (e1(y, u), e2(y, u))
= (yt − νyxx + yyx − f − bu, y(0)− y0),

where

X = W (0, T )×L2(0, T ) and Y = L2(0, T ; V ∗)×H.

Then, the optimal control system above can
be interpreted as a minimization problem with
equality constraints

minimize J(y, u), s.t. e(y, u) = 0.

It was proved that there exist an optimal so-
lution (y∗, u∗, λ∗, µ∗) satisfying the first-order
necessary optimality conditions [1, 9, 11]

L′(y∗, u∗, λ∗, µ∗) = 0, e(y∗, u∗) = 0

with the augmented Lagrangian

L(y, u, λ, µ) = J(y, u) + (e1(y, u), λ)L2(V ∗),L2(V )

+ (e2(y, u), µ)H .

First-order optimality conditions lead to the
following optimality system:

y∗t − νy∗xx + y∗y∗x = f + bu∗ in Q,
y∗(t, 0) = y∗(t, 1) = 0 on Σ,

y∗(0) = y0 in Ω,
(2)

p∗t + νp∗xx + y∗p∗x = y∗ − yd in Q,
p∗(t, 0) = p∗(t, 1) = 0 on Σ,

p∗(T ) = 0 in Ω,
(3)

with the gradient condition

αu∗ + p∗ = 0.

Here, u∗ is the optimal control and y∗ denotes
the associated optimal state, p∗ is the adjoint
state.

The adjoint equation (3) can be transformed
by the time transformation τ = T − t into an
initial-boundary value problem

p∗τ − νp∗xx − y∗p∗x = ỹd − ỹ∗ in Q,
p∗(τ, 0) = p∗(τ, 1) = 0 on Σ,

p∗(τ = 0) = 0 in Ω,



where ỹ∗(τ, x) = ỹ∗(T − τ, x).

As a numerical example we have chose the fol-
lowing optimal control problem in [9] with the
parameters α = 0.05, ν = 0.01, f = 0, with
the desired state yd(t, x) = y0 and with the
initial condition

y0 =
{

1 in
(
0, 1

2

]
,

0 otherwise.

The control acts on the located support
(0, T )× ( 1

4 , 3
4 ).

2.1 Sequential or iterative approach: the
gradient method

Introducing the control to state operator G :
L2(Q) → H that assigns to each u ∈ L2(Q)
the corresponding Burgers solution y(u), the
state variable y can be from the objective func-
tion using the solution operator G. Then, the
functional J(G(u), u) will be minimized by the
gradient method:
(

d

du
J(G(u), u), h

)
= (G(u)− yd, Gh) + α(u, h)

= (G∗(G(u)− yd), h) + α(u, h),

where h ∈ L2(Q) is a directional vector. The
descent direction is given by

ν = G∗(G(u)− z) + αu.

The adjoint state is p := G∗(G(u) − z) =
G∗(y− z). We use the gradient method as de-
scribed in [5] where for the Burgers equation
at each iteration step a nonlinear system of
equation is to be solved.

After specifying the domain: Q = (0, 1)×(0, 1)

fem.geom=solid1([0 1])

the solution of state equation given as:

fem.equ.f = { {’u-y*yx’ ;0;0;0 } }

% boundary conditions

fem.bnd.r = { {’y’ 0 0 0} };

fem.xmesh = meshextend(fem);

% time dependent PDE solver

fem.sol = femtime(fem,’solcomp’,{’y’},...

’outcomp’,{’y’,’p’,’u’,’uold’},...

’u’,fem.sol,’tlist’,[0,1]}

Similarly, the adjoint equation (3) is solved by
redefining the boundary conditions and the co-
efficients for p and u. We refer to [5] for a

detailed COMSOL script for building the fem-
structure that solves time dependent PDEs in
COMSOL Multiphysics.
The numerical results for different space and
time meshes are listed in Table 1.

∆xmax = ∆tmax ||J(y, u)||Q # iterations
2−3 0.06725 32
2−4 0.07233 46
2−5 0.06926 73
2−6 0.06778 74

Table 1: Gradient method for the unconstraint
optimal control problem.

2.2 One-shot approach: treating the
reverse time directions by
simultaneous space-time
discretization

From the gradient equation, holding in the
whole space-time domain Q for the distributed
control problem or the boundary Σ for the
boundary control problem, we obtain u∗ =
1
αp, where p is evaluated in the whole domain
or on the boundary. When this expression is
inserted into the state equation and the time
variable, t is treated as an additional space
variable we obtain the following boundary-
value of the form:

yt − νyxx + yyx = − 1
αp

pt + νpxx + ypx = y − yd

}
in Q,

y = 0
p = 0

}
on Σ,

y = y0 in Ω× {0}.
p = 0 in Ω× {T}. .

In the sequential approach optimality sys-
tem is solved iteratively using the gradient
method. The control variable u is first initial-
ized and the state equation was solved for y
forwards; the adjoint equation backwards for
p until convergence. In one-shot approach,
the optimality system in the whole space-time
cylinder is solved as an elliptic (biharmonic)
equation by interpreting the time as an addi-
tional space variable.

We used adaptive elliptic solver adaption :

fem=adaption(fem,’ngen’,2,’Maxiter’,50,...

’Hnlin’,’off’);

and nonadaptive elliptic solver femnlin



fem.sol=femnlin(fem);

We have used quadratic finite elements for the
state y and adjoint variable p.

Figure 1 shows the computed optimal control
uh, the computed optimal state yh and the as-
sociated adjoint state uh for the one-shot ap-
proach with adaptation for h = ∆xmax = 2−6.
The numerical solutions obtained by the
gradient method and by the one-shot ap-
proach without adaptation are similar to
those in Figure 1. The adaptive mesh for
h = ∆xmax = 2−4 is given in Figure 2.

Figure 1. One-shot approach with adaptation
for the unconstrained problem.

Figure 2. Adaptive mesh of the one-shot
approach for the unconstrained problem.

The numerical results for different mesh
sizes are given in Table 2.

∆xmax ||J(y, u)||Q ||J(y, u)||Q
with adaption with femnlin

2−3 0.0663 0.0651
2−4 0.0667 0.0686
2−5 0.0667 0.0671
2−6 0.0667 0.0669

Table 2: One-shot approach for the unconstraint
control problem.

3 Optimal control of Burgers
equation with inequality control
constraints

We consider now distributed optimal control
problem with bilateral control constraints [8]

min J(y, u) =
1
2
‖y − z‖2Q +

α

2
‖u‖2Q

s.t.yt + yyx − νyxx = f + bu in Q,

y = 0 in Σ,

y(, ·) = y0 in Ω,

with pointwise control constraints

ua(t, x) ≤ u(t, x) ≤ ub(t, x) in Q

First-order necessary optimality conditions for
the local solution (y∗, u∗) have to be satisfied
with the adjoint variable p∗ in form of the
optimality system (2) and (3) including the
control constraints u∗ ∈ Uad = {u ∈ L2(Q) :
ua(t, x) ≤ u(t, x) ≤ ub(t, x)}. Because of the
pointwise constraints, additionally we have the
variational inequality
∫

Q

(αu∗+bp∗)(u−u∗)dxdt ≥ 0 for all u ∈ Uad.



The last inequality can be expressed in form
of the projection:

u∗(t, x) = P[ua(t,x),ub(t,x)]

(
b(t, x)

α
p∗(t, x)

)

As a numerical example we consider the uni-
laterally control constrained bounded prob-
lem (u ≤ ub) with the initial condition
y0 = sin(13x), ν = 0.1 , ub = 0.3 and reg-
ularization parameter α = 0.01 in [7]. The
desired state is taken as the initial condition
yd = y0

We have used the projection method as in [4]
to implement complementary slackness condi-
tions,

(µ, u− b) = 0, u ≤ b, µ ≥ 0.

The projection method handles the comple-
mentary slackness conditions by replacing this
conditions by a projection. This is an imple-
mentation of the active set strategy as a semi
smooth Newton method [2]. It can be shown
that complementary slackness conditions are
equivalent to

µ = c max(0,
µ

c
+ u− b) for any c > 0.

By choosing c = α and eliminating µ from the
gradient equation αu + p + µ = 0 we get

µ = α max(0,−b− p

α
) a.e. in Q.

In COMSOL Multiphysics, the projection
method is implemented in the following form:

• using the one shot approach

fem.equ.f= { {’-ytime-(p+mu)/alpha-yyx’

’ptime+y-zd(x,time)+y*px’...

’(1/alpha)*mu-max(0,-b-(1/alpha)*p)’}};

• using the gradient method

fem.equ.f ={ {0;0;0;0;’(1/alpha)*mu

-max(0,-b-(1/alpha)*p)’ } };

We then define the fem structure, to solve
the optimality system by one call of nonlinear
solver femnlin. This solver is an affine invari-
ant form of the damped Newton method. This
solver is often used to solve problems with the
augmented Lagrangian technique.

Numerical results of the gradient method are
given in Table 3:

∆xmax = ∆tmax ||J(y, u)||Q # of iterations
2−3 0.2155 52
2−4 0.20824 65
2−5 0.2023 219
2−6 0.2006 524

Table 3: Gradient method for the control
constraint problem.

We have solved the control constraint using
the one-shot approach with the adaptive solver
adaption and with without adaptation using
femnlin. The fem structure in COMSOL
Multiphysics contains the geometry of the do-
main, the coefficients of the PDEs, etc. The
following lines are from the one-shot approach:

fem.form=’general’; fem.globalexpr= {’u’...

’-(p+mu)/alpha’ };

fem.equ.ga= { { {’-nu*yx’ ’0’} {’-nu*px ’...

’0’ }... {’0’ ’0’ } }};

fem.equ.f= { {’-ytime-(p+mu)/alpha-y*yx’...

’ptime+y- ...zd(x,time)+y*px’ ...

’(1/alpha)*mu-max(0,-0.3-(1/alpha)*p)’ } };

fem.bnd.ind=[1 2 3 2];

%Boundary conditions

fem.bnd.r= { {’y-y0(x)’ 0 0 };...

{’y’ ’p’ 0 }; {0 ’p’ 0 } };

fem.bnd.g= { {0 0 0 }; {0 0 0 };...

{0 0 0 } };

% Postprocessing

postplot(fem,’tridata’,’y’,’triz’,’y’)

We used for state and adjoint state variables
quadratic finite elements like in the uncon-
straint case, for the Lagrange multiplier µ, lin-
ear finite elements are taken.

∆xmax ||J(y, u)||Q ||J(y, u)||Q
with adaption with femnlin

2−3 0.2000 0.1985
2−4 0.2002 0.2000
2−5 0.2003 0.2002
2−6 0.2003 0.2003

Table 4: One-shot approach for the control
constraint problem .

In Figure 3, the computed solutions are
given for the control constraint problem for
∆xmax = 2−6. The numerical solutions ob-
tained by the gradient method and by the one-
shot approach without adaptation are similar
to those in Figure 3. The adaptive mesh



for h = ∆xmax = 2−4 is given in Figure 4.

Figure 3. One-shot approach with adaptation
for the control constrained problem.

Figure 4. Adaptive mesh of the one-shot
approach for the control constrained problem.

4 Conclusion

We have shown that the finite element package
of COMSOL Multiphysics can be used for solv-

ing time-dependent non-linear optimal control
problems. For the viscous Burgers equation
it was shown that when the optimality con-
ditions are available in for of PDEs, the spe-
cialized finite elements solvers can be easily
implementable. Both classical gradient based
approach solving the state equation forward
in time and the adjoint equation backward in
time and solving the the whole optimality sys-
tem as an biharmonic equation produces sat-
isfactory results for the Burgers equation.

The applicability of this approach should
be tested for Burgers equation with state con-
straints as it was done in [6] for parabolic
control problems. We also plan to apply the
various stabilization techniques available in
COMSOL Multiphysics to the Burgers equa-
tion.
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