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Abstract: In this work the solution of the
structural problem obtained by mean of the
velocity approach is presented. More in de-
tail the balance and constitutive equations are
expressed in Eulerian form, the mesh is not
material. The approach is general, is suitable
both for material boundary or no-material
boundary and for a generic material model.
The Hooke’s elastic model and the Anand’s
plasticity model are considered. Some 2D and
3D cases are developed, with COMSOL, AN-
SYS and MSC-MARC, to study and verify this
approach by respect to the structural prob-
lem.
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1 Introduction

The solution of the structural problem can be
obtained using the velocity as dependent vari-
able. So it is possible to model in a very gen-
eral way the structural problem. Indeed, the
velocity as dependent variable implies an in-
cremental approach where the time variation
of the various quantities must be defined. This
is exactly the way in which the physical pro-
cesses develop. Furthermore, the velocity ap-
proach allows:

1. no-material mesh (using FEM);

2. to model problems both with material
boundary and/or no-material boundary;

3. to easily include generic and complex
material model.

The velocity approach is especially suited to
structural problems with large strain and dis-
placement. In such problems, the possibility
to use a no-material mesh can reduce pow-
erfully the mesh-distortion. Across a mate-
rial boundary there is not material flux, of

this kind is the classical case of the structural
study of a mechanic part. Across a no-material
boundary there is material flux, this kind of
boundary condition is used, for example, in
continuous processes (like rolling).
The aim of this work is to study and verify the
velocity approach. It is made with a Eulerian
form of the equations, so the momentum bal-
ance is expressed by (1). The Hooke’s elastic
model (2) and the Anand’s plasticity model
(3) are considered. Both 2D and 3D cases are
developed.

To handle and solve equations is used
COMSOL with its Equation-Based Modelling
and Deformed Mesh Module (to take the po-
sition and geometry variation). To verify the
applied equations some simple cases are solved
also with ANSYS and MSC-MARC. To study
the velocity approach some cases are devel-
oped also to evaluate the model numerical be-
haviour.

2 Governing Equations

Only momentum balance and constitutive
equations are considered. The temperature θ
and the density ρ are constant and uniform.
The momentum balance is expressed by

ρ ∂tvi + ρ v · ∇vi = ∂jσij + fi (1)

The Hooke’s elastic model is expressed by

T∇ = LD (2)

The Anand’s plasticity model [1] is expressed
by

T∇ = L (D−Dp) (3)

Where
v is the velocity,
f is the body force,
T is the Cauchy stress tensor (Tij ≡ σij),
T∇ij ≡ ∂tσij + vl ∂lσij −WilTlj + TilWlj ,
L ≡ 2µI+[k− (2/3)µ]1⊗1 is the fourth order
isotropic elasticity tensor,
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D ≡ sym(L) is the stretching tensor (Lij ≡
∂jvi),
W ≡ skew(L) is the spin tensor,
Dp ≡ ˙̃εp(3/2)(T′/σ̃) is the flow rule,
T′ is the deviator of the Cauchy stress tensor,
σ̃ =

√
(3/2)T′ ·T′ is the equivalent tensile

stress,
˙̃εp ≡ A exp (−Q/(Rθ)) (sinh (ξσ̃/s))1/m is the

flow equation,
ṡ = h0 |1− s/s∗|a sign (1− s/s∗) ˙̃εp is the evo-
lution equation with
s∗ = s̃

[ ˙̃εp/A exp (Q/(Rθ))
]

Where θ is the temperature in K.
The material parameters are: k, µ (Hooke and
Anand), A, Q, m, ξ, h0, a, s̃, s0 (Anand).

3 Methods

To study and verify this velocity approach,
simple 2D and 3D cases are simulated. In the
present work, four kind of case are evaluated:

1. 2D axial-symmetric hollow sphere with
internal hydrostatic pressure;

2. traction of a 3D beam;

3. bending of a 3D beam;

4. torsion of a 3D beam.

All cases are simulated with Hooke’s material
model, 1 and 4 also with Anand’s material
model. To study means to evaluate the numer-
ical behaviour of the COMSOL models and
their results. To verify means compare the re-
sults of the COMSOL models with those of the
two commercial software ANSYS and MSC-
MARC. To execute these tasks, deformed ge-
ometry and displacements, principal resultant,
stresses and the balance between internal and
external mechanical power are evaluated.

4 Numerical Model

The simulations are performed with the soft-
ware:

1. COMSOL 3.5a;

2. ANSYS 11.0;

3. MSC-MARC 2005r3.

The simulations are performed on a 2
Quad-Core AMD Opteron(tm) Processor
2356 8GB RAM Linux WS. With the Hooke’s

material model the elements utilized in
COMSOL are Lagrange-linear whereas in AN-
SYS and MSC-MARC are quadratic. With
the Anand’s material model MSC-MARC is
not used and the elements utilized are lin-
ear both in COMSOL and in ANSYS. The
elements are quadrilateral (2D) and hexahe-
dron (3D) generated with a mapped mesh
procedure. All the simulations are transient.
With COMSOL, Equation-Based Modelling
and Deformed Mesh Module are utilized.

For the coordinate system has been
adopted the COMSOL nomenclature:
(x, y, z)ale is the spatial frame, (X,Y, Z)ref
is the reference frame.

case 1
The sphere has a concentric spherical hollow.
The inner radius is 0.5, the outer one is 1.0 .
The load is a pressure p = 20MPa t applied on
the inner surface of the hollow. By symmetry,
only a quarter of the diametrical section is
modelled. The center is at (0, 0, 0)ale.

cases 2-3-4
The beam has a square section with a side of
0.05 and a length of 1.0. The x-axis is the
beam axis. The beam ends are at X = 0 and
X = 1. The loads are only on beam ends.

case 3-4
The beam ends are rigid surfaces.

case 2
The loads, for t ∈ [0, 10], are:

vx = 0 at X = 0
vx = 2t at X = 1

case 3
The loads, for t ∈ [0, 1], are:

vx = vy = vz = 0 at X = 0

vx = vPx − α̇ (y − yP )
vy = vPy + α̇ (x− xP )
vz = 0

 at X = 1

Where P is the point of coordinates
(1, 0, 0)ref = (xP , yP , 0)ale and

xP = sin (α) /α
yP = (1− cos (α)) /α
vPx ≡ ẋP

vPy ≡ ẏP

α = π/6 t2



These loads at X = 1 are a rigid rotation-
translation of the end beam around the point
P with an angular velocity of (0, 0, α̇). The
path of P is that it would have if the beam
were bended in this way:

1. the length of the axis is constant;

2. the axis is an arc of circumference;

3. the sections that are orthogonal to the
axis, at the initial time, remain orthog-
onal to it.

case 4
The loads, for t ∈ [0, 1], are:

vx = vy = vz = 0 at X = 0

vx = 0
vy = −α̇ z
vz = +α̇ y

 at X = 1

α = π t2

These loads at X = 1 are a rigid rotation of
the end beam around the point (1, 0, 0)ref with
an angular velocity of (α̇, 0, 0).

The material parameters are reported in
the following tables.

Hooke Anand
E 70 MPa E 105 GPa
ν 0.3 ν 0.41

A 6.346 E+11 s−1

Q 312.35 kJ/mol
m 0.1956
ξ 3.25
h0 3093.1 MPa
a 1.5
s̃ 121.1 MPa
R 8.314472 J/(mol K)
s0 66.1 MPa

The Anand’s parameters are pertinent to a
BCC polycrystalline Fe-2% silicon alloy at a
temperature θ = 1000 C [1].

5 Experimental Results

The results of the simulations have been ana-
lyzed and elaborated. They are reported in the
next pictures and graphs.The resultant force
F, the resultant moment M, the internal me-
chanical power Pint and the external mechan-
ical power Pext are calculated as:

F =
∫
A

t dA

M =
∫
A

OZ× t dA

Pint =
∫
Ω

[σij∂ivj − ρ (∂tvi + vj∂jvi) vi] dΩ

Pext =
∫
A

t · v dA

Where Ω is the mechanical part, A is the
boundary on which loads are applied and
t = t (Z,n) is the specific force applied on
the surface dA, that is centred on the point
Z and that has the normal n. The point
O = (0, 0, 0)ale. The vector u is the displace-
ment.

case 1 Hooke
The displacements are reported on the point:

P1 = (0.5, 0)ref

In fig.s 1, 2 is shown σ̃ respectively from
COMSOL and ANSYS. In fig. 3 is shown
ux(P1) from COMSOL and ANSYS.

case 2-3-4
The displacements are reported on the points:

P1 = (1, 0, 0)ref
P2 = (1, 0.025, 0.025)ref
P3 = (0.5, 0.025, 0.025)ref

case 2
In this case, neglecting the inertial force, exists
the analytical solution that is:

εxx = ln(1 + ∂Xux)
σxx = Eεxx

ux (t,X, Y, Z) = ux (t, 1, 0, 0)X

The displacement components ux and uy in
the domain are shown in fig.s 4, 5. In fig. 6
are shown ux(P1) from COMSOL (u1) and
from analytical solution (u1 c). In fig. 7 are
shown σxx(P1) from COMSOL (s11,E1*e11)
and from analytical solution (E*e11 c). In
fig. 8 are shown uy(P2) from COMSOl and
MSC-MARC.

case 3
In fig.s 9, 10, 11 is shown σ̃ respectively from
COMSOL, ANSYS and MSC-MARC. In fig.
12 is shown Mz from COMSOL, ANSYS and



MSC-MARC. In fig.s 13, 14 are shown respec-
tively ux(P2) and uy(P2), from COMSOL,
ANSYS and MSC-MARC. In fig. 15 are shown
Pint and Pext from COMSOL.

case 4 Hooke
In fig.s 16, 17, 18 is shown σ̃ respectively from
COMSOL, ANSYS and MSC-MARC. In fig.
19 is shown Mx from COMSOL, ANSYS and
MSC-MARC. In fig.s 20, 21 are shown respec-
tively uy(P2) and uz(P2), from COMSOL,
ANSYS and MSC-MARC. In fig. 22 are shown
Pint and Pext from COMSOL.

case 4 Anand
In fig.s 23, 25, is shown σ̃ respectively from
COMSOL and ANSYS. In fig.s 24, 26, is
shown s respectively from COMSOL and AN-
SYS. In fig. 27 is shown Mx from COMSOL
and ANSYS. In fig.s 28, 29 are shown respec-
tively uy(P3) and uz(P3), from COMSOL and
ANSYS. In fig. 30 are shown Pint and Pext
from COMSOL.

6 Discussion

The deformed geometry obtained from
COMSOL is that foreseen. The displace-
ments u from COMSOL, ANSYS and MSC-
MARC, are in very good agreement. The
stresses and the principal resultant Mz, Mx

from COMSOL. ANSYS and MSC-MARC,
are in good agreement. The state variables
s from COMSOL and ANSYS are in good
agreement. In the case 2 there is a very good
agreement between COMSOL and analytical
solution. The very good agreement between
Pint and Pext, demonstrate the goodness of
the COMSOL simulations.

7 Conclusions

The solution (COMSOL) of the velocity ap-
proach equations is not problematic (i.e. are
not necessary special numerical treatment).
The agreement of the COMSOL results with
those of ANSYS,MSC-MARC and analytical
solution, demonstrate, within the limits of this
preliminar work, the suitability of the veloc-
ity approach equations to solve the structural
problem.

8 Use of COMSOL Multiphysics

COMSOL Equation-Based Modelling and De-
formed Mesh Module are tools very suitable to
solve this type of problem, not only for writing
the necessary, and not standard, equations,
but also for adding special terms to correct
eventual numerical problems.

9 Figures

Figure 1: COMSOL 2D Hooke σ̃

Figure 2: ANSYS 2D Hooke σ̃



Figure 3: 2D Hooke ux(P1)

Figure 4: COMSOL traction Hooke ux

Figure 5: COMSOL traction Hooke uy

Figure 6: traction Hooke ux(P1)

Figure 7: traction Hooke σxx(P1)

Figure 8: traction Hooke uy(P2)



Figure 9: COMSOL bending Hooke σ̃

Figure 10: ANSYS bending Hooke σ̃

Figure 11: MSC-MARC bending Hooke σ̃

Figure 12: bending Hooke Mz

Figure 13: bending Hooke ux(P2)

Figure 14: bending Hooke uy(P2)



Figure 15: COMSOL bending Hooke Pint Pext

Figure 16: COMSOL torsion Hooke σ̃

Figure 17: ANSYS torsion Hooke σ̃

Figure 18: MSC-MARC torsion Hooke σ̃

Figure 19: torsion Hooke Mx

Figure 20: torsion Hooke uy(P2)



Figure 21: torsion Hooke uz(P2)

Figure 22: COMSOL torsion Hooke Pint Pext

Figure 23: COMSOL torsion Anand σ̃

Figure 24: COMSOL torsion Anand s

Figure 25: ANSYS torsion Anand σ̃

Figure 26: ANSYS torsion Anand s



Figure 27: torsion Anand Mx

Figure 28: torsion Anand uy(P3)

Figure 29: torsion Anand uz(P3)

Figure 30: COMSOL torsion Anand Pint Pext
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