Improving the Performance of Hearing Aids Using Acoustic Simulations

Comsol conference, Milan, 2009

Mads J. Herring Jensen

Contents

- 1. Introduction
- 2. Directional microphones
- 3. Motivation
- 4. Simulations
- 5. Conclusions

 $Re(Pe^{i\omega t})$

Introduction

What is a hearing aid?

Directional microphones

Spatial noise reduction

Two microphone system (delay and subtract)

Motivation What do we want to model?

Directional pattern of head

Verification of model with KEMAR mannequin

Results

Directional pattern of head

R = 100 cm (FEM)
R = 100 cm (experi.)

Hearing aid in free field

Hearing aid in free field

f = 5000 Hz

P

Hearing aid on KEMAR

Conclusions

- Developed a tool for simulating directional characteristics of hearing aids in free field and when placed on a head.
- Save a lot of time compared to lengthy and complicated measurements.
- Early benchmarking and characterization of new hearing aid designs.
- Study the influence of the head on the directional microphone system. Input for the DSP guys.

Thank you!

