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1 Abstract 

 

The interaction of a single particle in straight rectangular channel in 

laminar flow is modelled explicitly using the set of Navier Stokes equation 

for the fluid motion and Newton momentum equation for the particle 

motion in Cartesian coordinate system. The evaluation of integral force 

acting on the particle along with the behaviour of streamlines as a function 

of Reynolds number ReP < 120 is done in 2-D numerical simulation. An 

example of linear shear flow condition in rectangular channel is studied to 

investigate the nature of drag and lift force in 2 - D simulation and the 

kinematics of a single particle explicitly in 3-D simulation. The aim of the 

kinematics study is to evaluate the steady state position of this single 

particle kept in a fluid stream under the gravitational force. The 3-D 

simulation schemes for particulate flows are only presented here since the 

results generation takes long time for CPU speed limitation.  

2 Introduction 

The science relating the motion of a particle in Newtonian fluid is applied 

to the mechanism of controlling the path, direction, position, velocity or 

physical behaviour of particles. It plays a crucial role in chemical and 

biochemical engineering because of its numerous physical realization e.g. 

sedimentation, fluidization of solid suspension, lubricated transport, 

hydraulic fracturing of reservoir, slurries, etc.  

In the current work, the consideration has been done of numerical 

modelling of the directing the position of a single particle in a laminar 

liquid. The position or the path of a single particle in the Newtonian fluid 

is controlled by the effect of forces acting on it. The set of equation 

describing the interaction of a single particle in straight rectangular 

channel with the laminar liquid is modelled explicitly using Cartesian 

coordinate system forming the Navier Stokes equation for the fluid motion 

and Newton momentum equation for the particle motion. The set of 

interacting explicit equations after transformation into non-dimensional 

form are implemented into CFD code using the boundary condition 

corresponding to the type of the flow condition viz. plug flow, shear flow 

and Poiseuille flow.  

A special case of a particle prevented from free rotation in linear shear 

flow is studied where besides the analyses of drag coefficient; lift 

coefficient is plotted as a function of Reynolds number ReP and is 

compared with other types of flow conditions in section ξ-3 simulation 

results. 

 

Figure 1: Schematics of a particle in linear shear flow. 

 

As shown in figure 1 a single particle is kept in the middle of a rectangular 

channel having uniform shear flow. In shear flow a particle experience a 

transverse force (or lift force) which plays an important part in many 

practical situations to predict the lateral migration of particle. 

The behaviour of drag coefficient, lift coefficient and wake formation are 

analysed as function of the Reynolds ReP and shear parameter K to see the 

effects of varying velocity gradient on the force field around the particle.  

After the assessment of the integral forces in 2-D simulation, the 

computation of integral forces around the particle in 3-D is done together 

with the additional volumetric force e.g. gravity force. These forces are 

used to determine the position and velocity vector of particle placed in the 

horizontal channel under the gravitational force acting in direction opposite 

to the fluid motion.  

The time dependent flow is simulated where the particle position and 

velocity values computed from the force balance are fed back to the fluid 

motion equation and this iteration loop is continued until the steady 

position of the particle is attained.  The steady state velocity of particle 

obtained is assessed against the terminal velocity of a particle.  All the 

simulation results are documented together with the required figures and 

tables for easy understanding. 

The main idea of this work is to maintain the position of particle in the 

fluid stream and evaluating the steady value of particle, its path and forces 

acting around it. The case of planar shear flow is taken as case study. For 

this the steady value of particle velocity is calculated from both stationary 

simulation and time dependent simulation. In both the simulation, the 

steady state value of particle velocity is study for different density ratio 

(0.5-3.0) of particle to the fluid. Finally the time dependent particle 

trajectory in the fluid stream of shear flow condition is plotted. 

The model accompanied with transformation into non-dimensional form 

and the computation of the forces is discussed in section 3, implementation 

of model into CFD code and simulation scheme for 2-D and 3-D in section 

4 and lastly simulation results are documented and shown graphically to 

discuss the relevant effect of the modelling and simulation in section 5.  

3 Problem Definition 

In modelling section the equation describing the physical model used in the 

current work is derived and discussed. The equations of fluid, particle 

motion equation followed by the integral force which couple both these 

equation are discussed. Finally before the implementation of the model it is 

transformed to non-dimensional form. 

3.1 Basic equation and formulation for Newtonian Fluids (NS 

Equation) 

The equation for the motion of an incompressible Newtonian liquid is 

described by the Navier-Stokes and the continuity equation (Patankar et al. 

2000).  

Navier-Stokes 

equation: 
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Continuity 0=⋅∇ u  in Ωf for t∈[0,T] (2) 

Excerpt from the Proceedings of the COMSOL Conference 2009 Bangalore 



 

equation:  

 

Total stress 

tensor: 
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(3) 

 

Here u is the fluid velocity, ρf the fluid density, b is the body force or 

volumetric force, Ωf is the domain occupied by the fluid at time t, I is the 

identity tensor,∇  Napla operator, 
2∇  Laplace operator, µf the viscosity, p 

is the pressure and σ is the total stress tensor of the Newtonian fluid which 

consist of pressure stress and viscous stress. The integration of σ around 

the particle gives the value of forces acting on it. The modified Navier-

Stokes equation for a Newtonian fluid consisting of pressure and viscous 

stress term after combining equation (1) and (3) is given below. 
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in Ωf for t є [0,T] (4) 

3.2 Equation of particle motion 

A small rigid spherical particle of diameter d and radius r is considered to 

be located at a position x(t) in a fluid. Its motion in the fluid stream is 

given by the well known Newton momentum equation neglecting its 

rotational motion and Magnus effect. 

Newton’s momentum 

equation: 
F

dt

dv
m =

 
(5) 

 

Resultant force vector: 
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Here, v is the particle velocity, m the mass of particle, ∂Ωp the boundary of 

the particle, n is the unit normal vector on the boundary ∂Ωp pointing 

outward of the flow region, S is the outer boundary of particle and F is the 

resultant force (inertial force and viscous force) acting on the particle. 

Combining equation (5) and (6) the equation for the particle motion in the 

fluid flow is given as  

Particle motion 

equation: 
Snd

dt

dv
m

S
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(8) 

The interaction of an incompressible fluid and rigid particle belongs to the 

class of fluid-structure interaction problems. The coupling between the 

fluids specified by the equation (4) and a particle can be twofold, i.e. one-

way or two-way. The coupling is one-way if a small particle is kept inside 

the fluid flow where there is no effect of a particle on the fluid motion. The 

other way around is also possible in some cases.  The problem become 

more complicated if the motion of the particle is induced by the fluid flow 

and at the same time the fluid flow pattern is influenced by the particle 

motion. In the present work two-way coupling is considered since the 

particle is not large to neglect its influence.  

Equation (4) and (7) are coupled to get two-way coupling interaction 

where the surface integration term in equation (7) is calculated from the 

Navier-Stokes equation (4) by evaluating the fluid stress tensor on the 

surface of the particle. The trajectory of the particle in the fluid stream is 

obtained by the iteratively solving the coupled Navier Stokes and particle 

motion equation. In that case first the Navier Stokes equation is solved 

using CFD software and the total stress tensor or the pressure and the 

viscous force acting on the particle is evaluated by integrating over the 

particle’s surface. From this force the acceleration, velocity and particle 

position of the particle given by Newton’s momentum equation (9) is 

calculated.  

Acceleration of 
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dv

m
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Velocity  of particle: ( )
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Solution of the integral equation (10) is given by analytical method as in 

equation (12) rather than relatively time consuming and inaccurate 

numerical method. Taking the initial condition for particle velocity as 

stationary and at located at position vector x(t0) or x0 with velocity v0. 

Initial condition of 

particle: 
Time t = 0 → x = x0,  v = v0 (11) 

 

Velocity  vector of 

particle: 
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Position vector: 
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3.3 Computation of the forces 

The force acting on the particle is usually the force arise due to the 

variation of the pressure forces and viscous forces on the particle surface. 

It can also be expressed in terms of the momentum flux far from the 

particle which does not require the knowledge of the flow in the vicinity of 

the particle (Batchelor 1970). Thus the forces acting on the particle in fluid 

flow are computed in two ways as described below:  

1. Integration of the liquid stresses along the particle contour i.e. 

integration of forces acting in the vicinity of the particle. 

2. Integration of all the forces and stresses along the boundaries of the 

computation domain i.e. forces on the body in terms of the momentum 

flux far from the body which does not require knowledge of the flow 

in the vicinity of the body. 

The equalities of these two methods are verified in section 3: simulation 

results. The force acting around the particle in fluid consists of two parts: 

Surface force and Body force 

Surface force = Pressure force + Viscous force (14) 

Body force/ Volume force = Gravity force  and Buoyancy force (15) 

Alternatively the force acting on the single particle immersed in a fluid 

stream is represented by the lift force and drag force. The combined 

pressure and viscous force which acts in opposite to the direction of fluid 

stream is termed as drag force whereas in direction perpendicular to the 

drag force is termed as lift force. The drag force is the resistance force to 

the motion of an immersed particle imparts by the fluid and hence it 

determines the velocity and acceleration of the particle. The values of drag 

force in the form of drag coefficient are compared as the benchmark test 

and are used in evaluating the effect of the CFD coding in determination of 

the integral force.  

The lift force consists of the buoyancy force and gravitational force in case 

of horizontal flow. It determines the motion of the particle perpendicular to 

the fluid motion and is important factor in a shear flow condition. For 2D 

fluid flow, the drag force and the lift force are given by the equation (15) 

and (16) respectively: 
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Drag force = Viscous term + Pressure term (in x-direction) 
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Lift force = Viscous term – Pressure term (in y-direction) 

Alternatively, Lift force = Gravity force(↓) + Buoyancy force(↑) 

Pictorially the forces acting around the particle in the fluid stream is 

presented as shown in Figure . In current situation the lift force is the 

resultant force acting in the y-direction and the drag in the x-direction. The 

pressure force acting on the particle is the resultant of the inertial effect of 

the fluid and viscous force as the resultant of the viscous effect of the fluid. 

 

 

Figure 2: Pictorially representation of forces around the particle 

The expression for drag force and lift coefficient in terms of drag force and 

lift force for 2-D particulate flow are given below (Turek et al.). 
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3.4 Transformation into non-dimensional form (Scaling) 

Scaling the variables in the Navier-Stokes and the particle motion 

equations transformed these equations into non-dimensional form which is 

useful to improve the solution of the coupled equation. Consider UC, i.e. 

free stream fluid velocity, as a characteristic velocity and d, diameter of 

particle as the characteristic length; the dimensionless variables are given 

in equation (19).   
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The non-dimensional form of Navier-Stokes, continuity and Newton 

equations after scaling is given below. 

Navier- 

Stokes: 
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Continuity 

equation: 
0=⋅∇ U  (10) 

 

Newton’s 

momentum 

equation: 
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Here, U, V, P, t , ∇ ,  
2

∇ are the dimensionless fluid velocity, particle 

velocity, pressure, time, Del operator and Laplace operator. m is the mass 

of a particle, ReP is the Reynolds number based on a particle’s diameter 

and G is the dimensionless gravity number and F is the dimensionless 

resultant force acting on the particle.  
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In dimensionless form CD and CL becomes twice the force equivalent and 

are given below where DC  and LC are dimensionless coefficient. 

Drag 

coefficient:  
DD FC =

 
Lift coefficient:  

LL FC =
 

(18) 

The equation of motion of particle in non-dimensional form is solved by 

applying the time step of 5/100 (where 5 = width of the channel, 100 = step 

change). 

4 Use of Comsol Multiphysic  

The complete model is implemented in Comsol 3.1 (FEMLAB). Since 

Comsol 3.1 is a stand alone CFD package where it is not feasible to 

simulate the model in loop required for data manipulation and controlling 

steps. MATLAB’s m-file programming interface is used to assist in 

controlling the FEMLAB simulation. 

First the assessment of the data computed is done for 2-D static 

incompressible flow past a long cylinder placed in a straight channel at 

right angle to the incoming fluid as shown in Figure 3. The cylinder is kept 

in the centre to have the steady-state symmetrical flow.  
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Figure 3: Boundary condition and sub-domain section for 2-D modelling 

and simulation results 

The computation of Drag force (FD) and Lift force (FL) acting on the 

cylinder can be done from the gradient of velocity field and the pressure 

field on the cylinder’s surface by taking the differentiation of FEMLAB 

solution value on its surface. But more efficient and time saving way of 

doing it is to use pair of weak constraint variable which is second order 

polynomial of the viscous and pressure force fields. This is done by 

integrating boundary of the particle surface by weak constraint. In the 

subsequent section the parameter selection and reason for particular choice 

is explained in detailed.  

Table 1:Mesh parameter used in simulation 

 2-D Model 3-D Model 

Predefined mesh size Normal Normal 

Maximum element size scaling 

factor 

0.3 1 

Element growth rate 1.2 1.4 

Mesh curve factor 0.25 0.4 

Mesh curvature cut off  0.0003 0.001 

Mesh geometry to level Sub-domain Sub-domain 

Number of elements  5262 16475 

Number of boundary elements 168 1850 

Minimum element quality 0.5068 0.3329 

Degree of freedom Around 24,000 Around 85,000 

Number of edge elements - 140 



 

Both unstructured or block structured give the same results and hence 

either one of them is used which work automatically in Comsol through 

mesh mapping. 

4.1 Computational scheme 

The types of 2D and 3D modelling and their simulation steps performed in 

programming are shown in flow chart or algorithm steps. 

The main aim of 2D modelling is to validate the forces around the circle in 

the fluid flow as shown in Figure 5. In 3D modelling stationary simulation 

to calculate the steady state particle velocity and the particle trajectory is 

determined. 

4.1.1 2D flow-stationary simulation 

The following steps are employed in solving the 2D modelling of infinite 

length cylinder in the fluid stream: 

1. First the geometry of a rectangular channel of length L = 5 unit and 

width W = 2 unit with circle of diameter positioning in the centre of 

the channel having coordinate (x, y) = (1, 1) is made. 

2. Set the value of ReP through MATLAB m-file interface. 

3. Set the physical properties of a fluid stream viz. density ρf =1 and 

viscosity µf = 1/ ReP according to the non-dimensional form of Navier 

Stoke equation (9) 

4. Select the outer boundary of the channel as per the type of flow 

condition selected e.g. plug flow, shear flow or Poiseuille flow. 

Boundary condition of circle is selected as ‘no slip’ condition. 

5. Refined the mesh near the circle-fluid interface in order to improve 

convergence and better the value of the solution. 

6. Select weak non-ideal weak constraint mode as Lagrange multiplier 

element over the entire domain to calculate the integral forces on the 

boundary of circular cylinder rather than rather than  

7. Set non-ideal weak mode of constraint under the option properties of 

physics menu. 

8. Compute the drag and lift force in the post-processing mode by 

integration of boundary of circle. 

Steps from 1 to 5 are then repeated through MATLAB m-file interface 

with FEMLAB by changing the Re values given that the simulation 

continues. 

Finally the plot of drag coefficient and lift coefficient against Reynolds 

number (Re) was plotted and explained in simulation results section. 

4.1.2 3D flow-stationary and unsteady state simulation 

3-D simulation is performed on the horizontal rectangular section imitating 

the vertical channel where the flow is against the gravitational force. It is 

discuss only for shear flow condition evaluating the stationary and the 

unsteady state simulation variables.  

In stationary shear flow calculation the particle is fixed on its placed and 

the balanced position of the particle is obtained by changing its density 

with respect to the fluid density against varying the flow-rate in terms of 

Reynolds number ReP. 

In time dependent simulation of the shear flow condition, the terminal 

velocity of the particle suspended is calculated. This is done by computing 

the velocity vector and the position vector of a particle from the integral 

forces and substituting again the velocity of particle back to the 3-D 

simulation of the fluid motion with particle using equation (9) and (11) on 

each time step (tS). The time step is taken as 5/100, where 5 is the 

residence time for the fluid flowing at the rate of 1 unit/sec. 

Stationary and unsteady state 3D calculations of particle velocity in shear 

flow were performed by two algorithms given below 

1. Calculation of the steady state relation between the density ratio and 

the ReP balancing all the integral forces acting on a particle. 

2. Time-dependent particle position computed from the integrated fluid 

forces around the particle 

The steps for implementing the 3D modelling is same as 2D except the 

inclusion of the gravity force opposite to that of drag force and the 

controlling of particle motion according to the flow chart.  

Stationary simulation steps 

The following steps are used in stationary simulation as also described 

below: 

1. Select incompressible Navier-Stokes model in 3-D solver and apply 

non-dimensional form of equation (10) as the fluid modelling equation.  

2. Set up the ReP to the laminar flow regime (10
0
 <ReP <10

2
).  

3. Substitute the  value of density ρf = 1 and viscosity µ f = 1/ReP 

4. Select ‘no slip’ condition for the boundary of a circle interacting with 

the fluid. 

5. Apply dimensionless gravitational force using equation (12) against 

the direction the direction of the flow to imitate it as the vertical 

upward motion of a fluid upon the particle against the gravity. 

6. Mesh the geometry with finer mesh area near the particles surface. 

7. Run the simulation with the non-linear GMRES solver with weak 

mode of constraint. i.e. weak condition apply to the boundary of the 

particle. 

8. Compute all the integral forces around the particle acting in x, y and z-

direction. Theses forces are then substituted to obtained the particle 

position vector and the particle velocity vector. 

9. Construct a plot of density ratio against velocity vector for different 

ReP.  

10. The minimum point of the curve is the required point where the 

density of a particle is small enough to balance the gravity force and 

the convective force acting of the fluid. 

Unsteady state simulation steps 

Following are the steps that were used in stationary simulation as also 

described by flow chart (Figure 7): 

1. First set the velocity of fluid as obtained in stationary simulation and 

compute the corresponding ReP. 

2. Positioned the particle in the middle of the rectangular channel with 

initial velocity of zero magnitude in all the direction i.e. V = (0,0,0). 

3. Perform the same steps 1, 3, 5, 6, 7 steps of stationary simulation steps. 

4. Compute the integral forces around the particle in x, y and z direction. 

The forces XF , YF  and ZF computed are non-dimensional forces and 

then drag, lift and suction coefficient. From the value of this 

coefficient, calculate the velocity vector V of particle using equation 

(20) taking time steps of 5/10. (Where 5 = length of channel and U = 1 

m/s is non-dimensional velocity of fluid stream and 10 = time step). 

5. Calculate the x-position of particle by using equation (23). Similarly 

calculate the y- and z- position of particle. 

6. Update the position and velocity of a particle found from the integral 

forces. 



 

7. Check the magnitude of particle velocity in x-direction. If it is around 

‘1’ then the particle is moving with the same velocity as the fluid 

under the effect of gravitational force. 

8. Repeat steps from 1 to 7 until converge obtained. 

At each time step, the previous flow field gives the forces on the particle, 

whose motion is then explicitly updated by Newton’s law, giving rise to a 

new domain. After re-meshing and mapping the old flow field onto the 

new mesh, the nonlinear Navier Stokes equations are solved by FEMLAB 

which are part of the boundary conditions for the fluid flow and then 

iteratively with the Newton’s equation of particle velocities. 

 

 

Figure 4: Flow chart for unsteady state simulation of particle motion in 

fluid 

5 Simulation Results 

For the 2D simulation results are analysed, where the drag coefficient CD 

of a circle in a straight channel with different boundary conditions are 

compared and investigated. The behaviour in the wake of the cylinder is 

examined and presented pictorially. The case study of a shear flow is then 

considered, where besides the drag coefficient, the lift coefficient CL has 

also been analysed.  

For 3D problem simulation results are unable to generate and are kept for 

future work.  

5.1 Two dimensional simulation results 

This is the benchmark test for the hydrodynamic forces computed around 

the single particle in fluid flow. The results obtained give the insight into 

the efficiency of the Comsol Software.  

A circle of diameter 0.1 units is placed in the centre of the rectangular 

channel of length 5 units and width 2 units. The equivalence of particle in 

the 3D fluid flow is taken as a circle in the straight channel which can be 

viewed as cylinder of infinite length in 3D dimension space. The boundary 

condition varies depending on the type of the flow needed to be simulated. 

There are 5 different types of planar flow conditions which are simulated 

and documented.  

1. Plug flow with homogenous boundary condition and incompressible 

Navier stokes model. 

2. Plug flow with neutral boundary condition and incompressible Navier 

stokes model. 

3. Plug flow with homogenous boundary condition and k-ε turbulent 

model. 

4. Shear flow condition with incompressible Navier stokes model. 

5. Poiseuille flow condition with incompressible Navier stokes model. 

The values of drag coefficient in all these 5 flow conditions are compared 

with the experimental values of the flow past the cylinder and its deviation 

from the experimental values in regards to the flow conditions is explained 

along with the behaviour of the streamlines behind the cylinder or circle in 

the channel. 

5.1.1 Computation of the forces by two methods 

 
Figure 5: Comparison of 2-D simulated x-directional forces 

 

 
Figure 6: Comparison of 2-D simulated y-directional forces 

 

Comparing the force acting in x-direction around the particle and around 

the outer domain as shown in figure 5, there is slight deviation between the 

forces at high particle Reynolds number 0.1 < ReP < 100 whereas in case of 

y-direction figure 6 it is in low particle Reynolds number ReP > 0.1. This 

slight deviation can be ignored since at high ReP the value of x-direction 

forces are low.  

5.1.2 Review of drag coefficient and Behaviour of streamline 

The drag coefficient values calculated in each of these five flow condition 

have been plotted as a function of particle Reynolds number ReP and 

compared with standard values given by Sucker and Brauer (1975). The 

values of drag coefficient with ReP for all the flow condition are tabulated 

in Appendix-A Section 7. 



 

 

Figure  7: Experimental results for drag coefficients, its viscous and 

pressure term against Reynolds number 

(Source: Schlichting et al. 1996) 

 

There are several different regions observed during motion of particle in 

the fluid stream during laminar flow condition as differentiated in the plot 

of drag coefficient CD against Reynolds number ReP figure 7. The 

corresponding streamline behaviour is provided by Schlichting et al. 

(1996) along with the range of CD values as shown in figure 8.  

 

Figure 6: Log-log plot of CD against ReP for different flow conditions 

5.1.3 Assessment of lift force in Shear flow condition 

The Shear flow is characterized by the linear velocity field of fluid is 

explained in appendix A.  At the top end boundary the fluid is moving with 

maximum velocity umax and at the bottom with zero velocity or ‘no slip’ 

condition. It is found that curve of ReP against CD of shear flow is same as 

plug flow with neutral boundary condition.  

In shear flow besides drag, a lift force is also important factor in deciding 

the direction of the particle. Due to the nature of shear flow the forces 

around the particle perpendicular to the flow have some non-zero value 

which can’t be neglected in the determination of the particle trajectory. 

The lift coefficient or so called dimensionless lift force obtained by the 

current simulation results has been plotted as a function of particle 

Reynolds number ReP and compared the same with calculated lift force in 

plug flow and Poiseuille flow. The values of lift coefficient CL are 

calculated for different Reynolds number by changing it instead of 

changing the flow velocity which is dimensionless velocity in the model 

equation.   

The lift force as shown in figure 10 is almost zero in un-sheared flow. This 

is due to the uniform flow pattern and one dimension velocity field in plug 

flow and Poiseuille flow. It can be non-zero at particle Reynolds number 

ReP < 300 as observed by Kurose and Komori (1999). The values of lift 

coefficient in shear flow are found to be constant at high ReP which is in 

agreement with the Saffman (1965). The unexpected behaviour of CL i.e. 

shifting of values from positive to negative and back to positive at 

particular ReP cannot be explained in the context of the theoretical 

investigation.  

 

Figure 9: Plot showing % deviation in the drag coefficient among shear 

flow having varying shear parameter 

 

 

Figure 10: Plot of lift coefficient as a function of Reynolds number for 

different shear parameter K 

The behaviour of streamline as also explained in the introduction section is 

different from the plug flow and Poiseuille flow. The length of the vortex 

is proportional to the drag coefficient as already noted, there is onset of 

Karman vortex formation in shear flow at around ReP = 50 which is not 

visible in uniform flow. This streamline nature is different from the plug 

flow whose pattern of CD against ReP plot is same as that of the shear flow. 

In shear flow the streamline seems to be having re-circulating zone 

pointing downward. This can be due to attraction of particle to the lower 

end having low velocity profile at high ReP as also explained by Feng and 

Josep (1995). The influence of the dimensionless shear rate or shear 

parameter K cannot be neglected on the lift coefficient and therefore is 

considered in the next section.  

Lift coefficient with varying shear parameter 

The plot of drag coefficient in % difference as a function of Reynolds 

number for different K shows that at low ReP higher the value of K lower is 

the CD values Similarly the plot of CL against ReP shows that the higher the 

value of K higher is the CL values at low Reynolds number. Both these 

characteristic of the 2-D shear flow condition is in accordance with the 

investigation made by Kang (2006). 

6 Conclusion 

2-D Simulation results for the computation of integral forces around single 

particle obtained were in agreement with the experimental valves from 

literature study. The integral forces around particle around outer domain  

shows resemblance similarly the simulation results for Drag coefficient 

and Lift coefficient shows agreement at low Reynolds which can also 

attribute to the inefficiency of solver at high Reynolds number. For 3-D 



 

simulation only flowchart showing simulation steps are discuss since 

simulation results are hard to generate owing to CPU limitation. 

7 Appendix A 

7.1 Appendix A1: Boundary conditions for plug, shear and 

Poiseuille flow 

 

 

 

 

Plug flow Shear flow with K = 1 

 

 
Poiseuille flow 

Figure11:Schematic of a different flow condition  with particle in centre  

showing vertex labels 

(1-2: Inflow side;  2-3: Top side; 1-4: Bottom side; 3-4: Outflow side; 5-8: 

circle boundary, UC = Approach velocity = 1 in all the flow conditions) 

 

Plug flow with homogeneous 

boundary conditions 

Inflow side: Constant input velocity, 

Ux=UC 

Top and Bottom side:  Constant 

input velocity field only in x-

direction, Ux=UC 

Outflow side: Zero pressure 

Circle boundary: No slip condition 

 

Plug flow with neutral boundary 

conditions: 

Inflow side: Constant input 

velocity, Ux=UC 

Top and Bottom side:  Neutral 

boundary / no stress across the 

boundary 

Outflow side: Zero pressure 

Circle boundary: No slip condition 

Shear flow 

Inflow side: Linear velocity profile 

with slope A (velocity gradient), 

Ux=UC*y*2 

Top side: Constant maximum 

velocity in x-direction 

Bottom side:  Zero velocity , Ux=0 

Outflow side: Zero pressure 

Circle boundary: No slip condition 

 

Poiseuille flow 

Inflow side: Parabolic velocity 

profile, Ux=6*(1-y2)*UC  

Top side and Bottom side:  No slip 

condition  

Outflow side: Zero pressure 

Circle boundary: No slip 

condition 

 

7.2 Appendix A2: 2D simulation results data 

7.2.1 Plug flow 

 
Figure 12: Schematic of observed wake behaviour behind the circle in 2-D 

plug flow in the simulation results 

7.2.2 Shear flow 

 
Figure 13: Schematic of observed wake behaviour behind the circle in 2-D 

shear flow in the simulation results 

 

7.2.3 Poiseuille flow 

 
Figure 14: Schematic of observed wake behaviour behind the circle in 2-D 

Poiseuille flow in the simulation results 

7.3 Appendix A3: Plot of pressure force and viscous force for 

different flow condition 

 
Figure 15: Log-log plot of viscous part of the drag coefficient for 2-D flow over circular 

cylinder: comparison between literature and simulation results 

 
Figure 16: Log-log plot of pressure part of the drag coefficient for 2-D flow over circular 

cylinder: comparison between literature and simulation results 

Table 2: Values of drag coefficient as a function of Reynolds number for different flow conditions
Particle 

Reynolds 

number, 

ReP  

Sucker and 

Brauer 

(literature) 

Plug Flow 1 

(simulation) 

Plug Flow 2 

(simulation) 

Plug flow 1 with 

k-epsilon turbulent 

model (simulation) 

Shear flow 

(simulation) 

Poiseuille flow 

(simulation)

0.0001 40560.00 77096.92 121156.0272 34426.6849 121156.0321 181507.1357

0.01 424.7000 773.1255 1211.5866 344.5152 1211.5888 1815.1113

0.1 57.2370 79.7992 121.4179 34.6783 121.4489 182.0293

1 10.5800 11.6638 13.8596 3.7024 13.7707 21.5338

4 4.5020 4.7953 5.1504 1.1271 5.0463 8.5280

6 3.6510 3.8137 4.0439 0.8336 3.9609 6.8225

6.2 3.5880 3.7461 3.9688 0.8141 3.8874 6.7055

6.4 3.5280 3.6822 3.8978 0.7958 3.8179 6.5948

6.6 3.4660 3.6215 3.8306 0.7786 3.7521 6.4899

7 3.3650 3.5090 3.7063 0.7468 3.6306 6.2954

8 2.8580 3.2703 3.4437 0.6800 3.3737 5.8827

10 2.8310 2.9168 3.0579 0.5832 2.9966 5.2714

15 2.4516 2.3943 2.4945 0.4447 2.4454 4.3653

20 2.1780 2.0978 2.1784 0.3694 2.1357 3.8475

23 2.0380 1.9717 2.0449 0.3385 2.0046 3.6259

30 1.8250 1.7592 1.8211 0.2880 1.7844 3.2495

40 1.6330 1.5630 1.6160 0.2439 1.5820 2.8974

50 1.5200 1.4308 1.4787 0.2158 1.4459 2.6573



 

60 1.4350 1.3336 1.3785 0.1961 1.3461 2.4801 

70 1.3710 1.2581 1.3011 0.1815 1.2689 2.3433 

80 1.3210 1.1973 1.2391 0.1701 1.2068 2.2346 

100 1.2420 1.1046 1.1453 0.1534 1.1126 2.0653 

120 1.2040 1.0372 1.0780 0.1416 1.0445 1.9314 
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