

that predicts, optimizes and innovates

Free Surface Deformation of the Weld Pool in Orbital Narrow **Groove GTA Welding**

October 23, 2018

that predicts, optimizes and innovates

Contents

- Presentation of SIMTEC
- Case of application : Gas Tungsten Arc Welding
- Physical phenomena & Modeling
- Results
- Summary & Future Work

Working with SIMTEC

Industry Challenges

- R&D sections: experts in their field
 - → Expertise in numerical modelling?
- Lack of time
- FE modelling performed by a small group of people

SIMTEC's Solutions

- Numerical modelling project
 - → SIMTEC's member as your colleague
 - → Help improve your modelling knowledge!
 - → Cost-effective outsourcing

that predicts, optimizes and innovates

Our team & Our clients

Numerical Modelling Consultants

- Extensive research background
- Complex problems
- Various fields of expertise

Successful Track Record:

- Big international compagnies
- Government laboratories

Involved in Research Consortia

- EU funded projects (REEcover / SHARK)
- PhD projects supervision.

→ Discover more about our successful modelling work with clients!

www.simtecsolution.fr

that predicts, optimizes and innovates

Assembly Process Modelling

Continuous Laser Welding

Additive Manufacturing

Laser Surface Texturing

Laser Drilling

Heterogeneous Laser Welding

Process Description and Objectives

Gas Tungsten Arc Welding (GTAW)

https://en.wikipedia.org/wiki/Gas_tungsten_arc_welding

- To understand the welding process behavior and the influence of all the process parameters
- To predict the dimensions of the Melted Zone, the Heat Affected Zone and the Weld Bead
- To improve the robustness of a welding application

Geometry and Materials

- Narrow Groove Welding
- 3D model
- One symmetry plane
- Material: 316L stainless steel

IAEA report, "Thermophysical properties of materials for nuclear engineering: a tutorial and collection of data" (2008)

that predicts, optimizes and innovates

Physical Phenomena & Modelling

Electro-Magnetism

$$\nabla \cdot (\sigma \nabla V) = 0$$

$$\nabla \times \left(\frac{1}{\mu_0} \nabla \times \mathbf{A}\right) + \sigma \nabla V = 0$$

Energy Balance

$$\rho C_p(\mathbf{u} - \mathbf{u_{weld}}) \cdot \nabla T = \nabla \cdot (k \nabla T) + Q_{EM}$$

$$\nabla \cdot (\boldsymbol{u}) = 0$$

$$\rho_L(\boldsymbol{u}\cdot\boldsymbol{\nabla})\boldsymbol{u} \ = \boldsymbol{\nabla}\cdot\left(-p\boldsymbol{I} + \mu\big(\boldsymbol{\nabla}\boldsymbol{u} + (\boldsymbol{\nabla}\boldsymbol{u})^T\big)\right) + \boldsymbol{F_{Darcy}} + \boldsymbol{F_{EM}} + \boldsymbol{F_{Buoyancy}}$$

Free Surface Description
[1]

$$-\nabla \cdot \left(\frac{\Upsilon}{\sqrt{1 + \phi_x^2 + \phi_y^2}} \nabla \phi\right) = P_{arc} + \rho g + \lambda$$

Moving Mesh (Hyperelastic)
$$W = \int_{\Omega} \frac{\eta}{2} (I_1 - 3) + \frac{\kappa}{2} (J - 1)^2 dV$$

[1] Wu et al., Numerical analysis of both front-and back-side deformation of fully penetrated GTAW weld pool surfaces, *Computational Materials Science*, **39**, 635-642 (2007)

Mechanisms

Joule Heating Lorentz Force

Liquid/solid transition
Evaporation
Buoyancy
Marangoni effects

Gravity
Surface tension
Arc pressure

Filler Metal 。

Numerical Aspects

Fine and mapped mesh

- Strong couplings (multi-physics) and highly non-linear problem
 - → Adapted solving strategy
 - Each equation is firstly solved separately
 - Thermo-hydraulic problem is then solved in the new configuration
 - The segregated solver is lastly used to solve the whole problem
- \cong 1 million of DoF \rightarrow 10 hours with 6 cores and 192 Go RAM

that predicts, optimizes and innovates

Results

Influence of the filler metal

Comparison of cross-sections

- Convective cells with contrary rotation making the melt pool deeper at the rear than under the welding torch
- Little impact of the filler metal on the velocities and Temperature maximum
- Melt pool volume remains the same for both configurations
- Penetration depth decreases for the case with filler metal and creation of a weld bead

that predicts, optimizes and innovates

Results

Influence of the welding position

- 1G and 3GD show little difference
- 3GU shows a larger deformation at the back of the pool → effect of the heavy liquid metal
- Limited sensitivity to the welding position

that predicts, optimizes and innovates

Summary & Future Work

- 3D Multiphysics Model applied to GTA Welding and taking into account several physical phenomena on an industrial application geometry
- Numerical aspects carefully managed to obtain stationary state convergence
- Numerical trends in agreement with literature data
- Comparison in progress with experimental data

Thanks for your attention .. and your questions!

Patrick NAMY
Vincent BRUYERE
vincent.bruyere@simtecsolution.fr

Simon MORVILLE simon.morville@framatome.com

that predicts, optimizes and innovates

Results

Influence of the filler metal

