

Numerical evaluation of the tuning, pressure sensitivity and Lorentz force detuning of RF superconducting crab cavities

E. Cano Pleite, A. Amorim, J. S. Swieszek, K. Artoos, O. Capatina

CERN

COMSOL CONFERENCE – LAUSSANE – 22/10/2018

Outline

- Introduction
- Numerical model
- Results
 - Overall results
 - Tunability
 - Pressure sensitivity
 - Lorentz force detuning
- Conclusions

Outline

Introduction

- Numerical model
- Results
 - Overall results
 - Tunability
 - Pressure sensitivity
 - Lorentz force detuning
- Conclusions

Introduction - CERN

CERN's Accelerator Complex

p (proton) ion neutrons p (antiproton) electron +++ proton/antiproton conversion

- CERN accelerator complex is the largest in the world
- LHC is the last stage and CERN's flagship
- 27 km underground tunnel
- 2 counter-rotating proton beams
- Collisions (experiment location) which generate other particles

- Radio Frequency System (Acceleration)
- Superconducting magnets (bend trajectory)
- 2 Collimation Regions (Beam Cleaning and Machine Protection)

Introduction - CERN

- CERN accelerator complex is the largest in the world
- LHC is the last stage and CERN's flagship
- 27 km underground tunnel
- 2 counter-rotating proton beams
- Collisions (experiment location) which generate other particles

- Radio Frequency System (Acceleration)
- Superconducting magnets (bend trajectory)
- 2 Collimation Regions (Beam Cleaning and Machine Protection)

Introduction - HL-LHC

- Peak luminosities a factor of five larger than LHC
- Update on superconducting magnets, high-power superconducting links with zero energy dissipation. New demands on vacuum, cryogenics and machine protection, and will require new concepts for collimation and diagnostics.
- Crab cavities. Transverse deflection of particle bunches.

Double Quarter Wave (DQW)

RF Dipole (RFD)

• Operated at **2 K**

Double Quarter Wave (DQW)

- Operated at 2 K
- 3.4 MV deflecting kick
- 400.79 MHz fundamental frequency. Tuning system

RF Dipole (RFD)

Double Quarter Wave (DQW)

RF Dipole (RFD)

- Operated at **2 K**
- **3.4 MV** deflecting kick
- 400.79 MHz fundamental frequency. Tuning system.
- Pressure sensitivity requirements. Changes of the cavity fundamental frequency due to pressure fluctuations of the cold He bath.
- Lorentz force detuning requirements. Change of the cavity fundamental frequency due to radiation forces.

Double Quarter Wave (DQW)

RF Dipole (RFD)

- Operated at **2 K**
- **3.4 MV** deflecting kick
- 400.79 MHz fundamental frequency Tuning system.
- Pressure sensitivity requirements. Changes of the cavity fundamental frequency due to pressure fluctuations of the cold He bath.
- Lorentz force detuning requirements. Change of the cavity fundamental frequency due to radiation forces.

Outline

Introduction

- Numerical model
- Results
 - Overall results
 - Tunability
 - Pressure sensitivity
 - Lorentz force detuning
- Conclusions

RF Dipole

- A Component 1 (comp1)
 - Definitions
 - A Geometry 1
 - Materials
 - Electromagnetic Waves, Frequency Domain (emw)
 - Solid Mechanics (solid)
 - Moving Mesh (ale)
 - Electromagnetic Waves, Frequency Domain 1 (emw1)
 - 👌 🛕 Mesh 1
- 🔺 🖘 Study 1
 - 😝 Cluster Computing
 - 📊 Step 1: Eigenfrequency 1
 - 🔁 Step 2: Stationary
 - du Step 3: Eigenfrequency 2
 - Solver Configurations
 - 👂 📥 Job Configurations

Double Quarter Wave

RF Dipole

Definitions

🖄 Geometry 1

- Materials
- Electromagnetic Waves, Frequency Domain (emw)
- Solid Mechanics (solid)
- Moving Mesh (ale)
- Electromagnetic Waves, Frequency Domain 1 (emw1)
- 🕨 🛕 Mesh 1
- ⊿ 🗠 Study1
 - 😝 Cluster Computing
 - 📶 Step 1: Eigenfrequency 1
 - 🚬 Step 2: Stationary
 - 📶 Step 3: Eigenfrequency 2
 - Solver Configurations
 - 🕨 📥 Job Configurations
- Two models:
- DQW for tunability, validation and mesh sensitivity
- RFD for pressure sensitivity (PS), Lorentz force detuning (LFD) and design optimization

Double Quarter Wave

RF Dipole

- Niobium RRR300 for the cavities
- 55Ti45Nb for the tuning interfaces
- Vacuum volume inside the cavity

Double Quarter Wave

8

RF Dipole

Fundamental frequency of the cavity

without any imposed load

Double Quarter Wave

RF Dipole

 Structural & moving mesh coupled simulation to capture the cavity and vacuum volume deformation.

Double Quarter Wave

- Boundary conditions:
 - Symmetry
 - Fixed ports
 - DQW: imposed displacement in the tuners

Double Quarter Wave

RF Dipole

RF Dipole

Tunability	PS	LFD
[kHz/mm]	[Hz/mbar]	[Hz/MV ²]
$\frac{f_1 - f_0}{ v_{s2} + v_{s1} }$	$\frac{f_1 - f_0}{P_{PS}}$	$\frac{f_1 - f_0}{V_{T,nominal}}^2$

HILUM

CERN

-100

z

x y

Outline

- Introduction
- Numerical model
- Results
 - Overall results
 - Tunability
 - Pressure sensitivity
 - Lorentz force detuning
- Conclusions

Results – DQW cavity

- Comparison with experimental results of the cavity cooldown at CERN at the end of 2017.
- Very good agreement between numerical and experimental results.
- Cavity tunability = $\frac{f_1 f_0}{|v_{s2}| + |v_{s1}|}$ = 315.5 kHz/mm, well in line with expected values.
- Incertitude associated to COMSOL and the transformation from displacement to force in the tuning system.

Cavity displacement (mm)

Cavity fundamental frequency vs. force on the tuning system

Results – RFD cavity

Electric field (V/m)

Overall results

Energy stored in the cavity for 3.4 MV deflecting kick = **10.7 J**

Scaling Factor for radiation pressure, SF=7.086-10⁸

Results – RFD cavity

Electric field (V/m)

Results – RFD cavity

Electric field (V/m)

HILUM

Tuning stiffness

- Tuning stiffness, k_s , parametric analysis.
- **Counteracting effects** of deformation in the pole and tuning regions.

Outline

- Introduction
- Numerical model
- Results
 - Overall results
 - Tunability
 - Pressure sensitivity
 - Lorentz force detuning
- Conclusions

Conclusions

- Tunability, pressure sensitivity and Lorentz force detuning of SRF Crab cavities were numerically evaluated using COMSOL.
- The numerical predictions of the DQW cavity tunability matched very well the experimental results.
- Pressure sensitivity and Lorentz force detuning values were used during the design stage of the RFD cavity body.
- Parametric study on the tuning stiffness is used for the design of the tuning system.
- COMSOL is a very powerful tool for the RF-Structural evaluation of crab cavities during the validation and design stages.

Thank you for your attention!

