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HAEMODYNAMICS AND ITS NEED

Study of the flow of blood through
arteries from a fluid mechanics
point of view

Needed to enrich the knowledge of the blood
flow pattern due to recent uprise in cardiac
diseases



60—69 years
50—69 years
40—49 years
3039 years
20-29 years

=
>
4
=
t
L
I
&
1
L
L

2005




STENOSIS

Abnormal narrowing of blood
vessels

Deposition of
cholesterol |
and other fatty matter g




CLINICAL STUDY

Doppler Ultrasound Image of the CAROTID ARTERY of
130 patients of varying age:

To determine the location of the stenosis

60% of IMAGES



= Newtonian for large arteries, including

the common carotid artery
= Non-Newtonian for narrower channels
= Density : 1050 Kg/m3
= Dynamic viscosity: 0.00345 Pa.s







MODELLING THE GEOMETRY
(AXIS-SYMMETRIC MODEL)

Assumption: The artery is a long straight pipe

DIAMETER(D,)=0.0057 m

CONSTRICTION= 62% of the
radius

RECTANGULAR GEOMETRY



ASSUMPTIONS

» The artery wall is rigid

» Blood flow is

2 Newtonian

o Laminar

0 Steady-state

2 Incompressible




GOVERNING EQUATIONS &
BOUNDARY CONDITIONS

Incompressible Navier-Stokes Equation:
o(UVU=V.[-pl +v(V.u+(V.u)']

Vu=0

AXIAL SYMMETRY

. P r :
INLET: u(r) =@ [1 - (Ej } ﬂ‘“ N OUTLET: ZERO PRESSURE

Xy

WALL (NO-SLIP)




MESHING IN COMSOL WI=E7ES o g

* Free mesh using triangular elements

Adaptive refinement near the constriction

SOLVER USED

*SOLVER TYPE: STATIONARY
*NAME OF SOLVER: DIRECT(PARDISO)



SUMMARY OF VALUES USED

FLUID PROPERTIES VALUES
DENSITY 1050 kg/m3
DYNAMIC VISCOSITY 0.00345 Pa.s.

GEOMETRICAL PROPERTIES VALUES
DIAMETER OF ARTERY 5.7 mm.
MAXIMUM CONSTRICTION 62%

FLOW PARAMETERS VALUES
REYNOLDS NUMBER 100, 400, 800, 1000

1%



RESULTS

Close similarities between
clinical and computational
results




RADIAL VELOCITY PLOT
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REATTACHMENT LENGTH VS. REYNOLDS NUMBER
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» The reattachment
length increases with
increase in Re
| *The length of
reattachment is 10%

higher for the
100 600 800 1000 1200 rectangular stenosis
Reynolds Number than the curved one

HIGHER REATTACHMENT LENGTH

Direction of flow ! | '
Direction of propagation
Of Stenosis

HIGHER RATE OF PROPAGATION OF STENOSIS
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CENTERLINE PRESSURE PLOTS
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CENTERLINE PRESSURE PLOTS

*Shows that irreversible
pressure rise increases

=100

with increase in Re
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CENTERLINE PRESSURE PLOTS

*Shows that irreversible
pressure rise increases
with increase in Re

*Shows that the pressure

rise is higher for the
rectangular stenosis by

23%.

3

HIGHER LOAD ON HEART




CONCLUSIONS

»Severity increases with increase in Reynolds number i.e.
increase in blood velocity.

» The length of the stenosis gradually increases.

» A rectangular constriction is more severe than a curved
one.

» A curved geometry gradually approaches a rectangular
shape

Ny Jh—
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THE
CONDITION
ESSENTIALLY
WORSENS
WITH TIME
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CAROTID ARTERY

Firel worbie intereostal
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CENTERLINE PRESSURE PLOTS
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CENTERLINE PRESSURE PLOTS
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