Analysis and Design of Electromagnetic Pump

Vikas Teotia
Sanjay Malhotra
Kumud Singh
Umakant Mahapatra

Control Instrumentation Division
Bhabha Atomic Research Center
Department of Atomic Energy
Mumbai

Introduction

Theory Involved

Lorentz Force per unit volume

 $J \times B$

Physical requirements(in liquid metal)

- 1. Current
- 2. Magnetic field
- 3. Current and magnetic field shall be perpendicular to each other

Fulfillment of requirements

A time varying magnetic field is all that is required (B)

A time varying magnetic field produces induction current in the liquid metal (J)

Interaction of B and J gives required Lorentz force

Attaining a time varying magnetic field

Modeling in COMSOL

Distribution of magnetic flux density

Induction current density distribution

Lorentz force distribution and direction

Magnetic flux density, induction current density and Lorentz force developed along circumference of duct

Factors affecting EM pump's performance

Maximum pressure developed by the pump depends on

- ☐ Directly proportional to angular velocity of rotor
- ☐ Proportional to square of strength of permanent magnets
- □ Depends on magnetic pitch. Magnetic pitch is angular distance between two permanent magnets

EM Pump performance due to rotor angular speed

EM Pump performance due to strength of permanent magnet

EM Pump performance due to magnetic angular pitch

Drawing of EM pump

Summary

Prototype pump establishing the proof of concept is running successfully in BARC.

EM pump needs optimization in terms of magnets and magnetic pitch.

Prototype EM pump developed in BARC

Thank You for your attention

Forum is open for discussions!