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Presentation Outline

* Background on PEM fuel cells

* Concept and Problem Statement
* Analytical Model

* Comsol Model

* Tterative Model

* Results

e Future work



PEM Fuel Cell:
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Courtesy of fueleconomy.gov, http://www.fueleconomy.gov/feg/fcv_PEM.shtml
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Bipolar Plates
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* Single fuel cell is limited to ~0.6 Vand ~o0.7 W.
* To increase power, stack many cells in series using
bipolar plates
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Bipolar plate functions

* Electrically conductive: transfers electrons to current
collectors

* Thermally conductive: heat removal
* Physical support of stack
* Distribute hydrogen and oxidant evenly

* Remove excess water
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Existing conventional flow pattern Bio-inspired Design
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Objective

* To optimize the bio-inspired flow pattern design by
adding the gates to each channel

e Uniform flow distribution
e Low pressure drop from the inlet to outlet
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(1) J. Kloess, X. Wang, J. Liu, Z. Shi, and L. Guessous, Investigation of bio-inspired flow channel designs for bipolar plates in proton
exchange membrane fuel cells, J. Power Sources, 188, 132-140 (2009)
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Methodology

* Analytical analysis

* Numerical Simulation
e Comsol-Flow dynamics
e Matlab-Optimization
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Analytical Model: Basic Ideas

Volumetric flow rate proportional to channel length

Inlet
I

Vv, Vg
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Analytical Model: Basic Ideas

Change in pressure across either path must be equal

Inlet
I
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Analytical Model: Basic Ideas

Change in pressure across any path must be equal

Inlet
I




Analytical Model: Basic Ideas

Assumptions

*VVelocity in GDL between
a inlet outlet pair is
constant for the length of
the channel

*Flow from runner to
channel is negligible
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Mesh Independence:
Model

*Model, 1 inlet, 2 outlets and GDL «3"d most refined mesh, mesh C
*This mesh is used in testing
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Mesh Independence:

Results
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Velocity towards catalyst in GDL also considered
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Using Incompresible Navier Stokes Equations

Outlet
1 (0 Pa

Brinkman equations
GDL Porosity=.78
GDL Permeability=5*10-12 m”"2

Symmetry boundary

A

Inlet _
Air ks =~ Element length at gates 3/5 of
20,75 m/s © element length in channels
75°C

Limitations

*No water generation or removal
*No mass flow through PEM



lterative Model: Comsol Side

Solve model, return channel pressure values

Simulation Results

COMSOL

MATLAB

*Pressures for pairs of inlet and outlet
channels are returned to Matlab

1 pair per gate is considered

Geometry



lterative Model: Matlab side

Modify gates to balance difference in pressures

Simulation Results

COMSOL

MATLAB

Geometry

*Matlab modifies geometry and
topography of the gates

*The goal is to find a geometry that will

produce a constant pressure difference
between inlet and outlet pairs

Runner

Channel
E

Bottom surface is fixed




Flow rates through Gates

Analytical Model: Results
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Flow rates through Gates

* Model improves
measured parameter

Percent Deviation

Iterative Model: Results
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Results

Velocity towards catalyst

Lung Model

Un-gated

Gated by analytical model 4

Gated by iterative mo.del

*Minimal change

*Hot spots at end of inlet channels
and beginning of outlet channels



Leaf Model: Results

Velocity towards catalyst

Gated by analytical model Un-gated

*Minimal change

*Hot spots at end of inlet channels
and beginning of outlet channels
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Future Work: Analytical Model

*The path from the runner —
to the outlet has the same \=.
pressure drop as the path ,
through the gate pot

*Flow rate through red
path will be prescribed

0.02
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Future Work: Iterative Model

Inlet

*Account for flow between
1st inlet channel and 1st
outlet channel

*Account for flow through
GDL between runners and
channels

Outlet
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terative model convergence
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Gate Heights from Iterative and Analytical Methods
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Pressure [Pa]
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Presaue [Pa)

Lung Design Pressures at inlets and outlets
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Slice: Velocity field [mfs]

elocity magnitude in GDL

trail 7, gates don't
induce mush GDL flow
but runners near outlets
do
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