Optimizing Bio-Inspired Flow Channel Design on Bipolar Plates of PEM Fuel Cells

Comsol Conference 2010 Boston James Peitzmeier 10/7/2010

Presentation Outline

- Background on PEM fuel cells
- Concept and Problem Statement
- Analytical Model
- Comsol Model
- Iterative Model
- Results
- Future work

PEM Fuel Cell: Basic Components

Courtesy of fueleconomy.gov, http://www.fueleconomy.gov/feg/fcv_PEM.shtml

Bipolar Plates

- Single fuel cell is limited to ~0.6 V and ~0.7 W.
- To increase power, stack many cells in series using bipolar plates

Bipolar plate functions

- Electrically conductive: transfers electrons to current collectors
- Thermally conductive: heat removal
- Physical support of stack
- Distribute hydrogen and oxidant evenly
- Remove excess water

Flow patterns on bipolar plates

Bio-inspired Design

Objective

- To optimize the bio-inspired flow pattern design by adding the gates to each channel
 - Uniform flow distribution
 - Low pressure drop from the inlet to outlet

Leaf Design (1)

(1) J. Kloess, X. Wang, J. Liu, Z. Shi, and L. Guessous, Investigation of bio-inspired flow channel designs for bipolar plates in proton exchange membrane fuel cells, *J. Power Sources*, **188**, 132-140 (2009)

New lung design

Methodology

- Analytical analysis
- Numerical Simulation
 - Comsol-Flow dynamics
 - Matlab-Optimization

Volumetric flow rate proportional to channel length

Change in pressure across either path must be equal

Change in pressure across any path must be equal

Assumptions

- Velocity in GDL between a inlet outlet pair is constant for the length of the channel
- •Flow from runner to channel is negligible

Mesh Independence:

Model

- Model, 1 inlet, 2 outlets and GDL
- •3nd most refined mesh, mesh C
- •This mesh is used in testing

Mesh Independence:

Results

Velocity towards catalyst in GDL also considered

Comsol Model

Using Incompresible Navier Stokes Equations

Limitations

- No water generation or removal
- No mass flow through PEM

Iterative Model: Comsol Side

Solve model, return channel pressure values

- •Pressures for pairs of inlet and outlet channels are returned to Matlab
- •1 pair per gate is considered

Iterative Model: Matlab side

Modify gates to balance difference in pressures

- Matlab modifies geometry and topography of the gates
- •The goal is to find a geometry that will produce a constant pressure difference between inlet and outlet pairs

Analytical Model: Results

Flow rates through Gates

- H is a tunable parameter
- Model balances measured parameter

Iterative Model: Results

Flow rates through Gates

 Model improves measured parameter

Lung Model: Results

Velocity towards catalyst

- Minimal change
- •Hot spots at end of inlet channels and beginning of outlet channels

Leaf Model: Results

Velocity towards catalyst

Gated by analytical model

Un-gated

- Minimal change
- Hot spots at end of inlet channels and beginning of outlet channels

Future Work: Analytical Model

- •The path from the runner to the outlet has the same pressure drop as the path through the gate
- •Flow rate through red path will be prescribed

Future Work: Iterative Model

- •Account for flow between 1st inlet channel and 1st outlet channel
- Account for flow through GDL between runners and channels

Questions?

Contact: James Peitzmeier

japeitzm@mtu.edu

Co-Authors: Steven Kapturowski, Dr. Xia Wang

Project supported by: National Science Foundation International Research Experience for Students (IRES) Program and the award number is #0853572.

Iterative model convergence

Gate Heights for lung design

Leaf Pressure at inlets and outlets

Lung Design Pressures at inlets and outlets

Velocity magnitude in GDL

