Acoustic streaming flows in discharge lighting

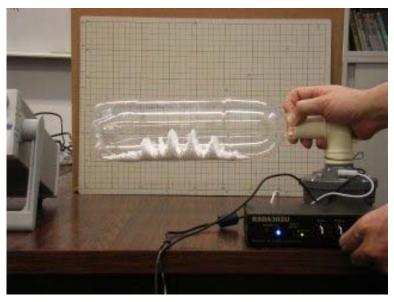
Thomas D Dreeben and Jo Olsen

10/7/2010

Outline

- •Early accounts of acoustic streaming
- High-intensity discharge lamps
- Construction of the Model
- Results
- Conclusion

The dust tube of A. Kundt¹ (1866)


Tube with cork dust

- •Standing sound waves cause cork-dust particles to form regularly-spaced clusters.
- •The speed of sound can be derived from frequency and cluster spacing.

¹Kundt, A.. (1866). "Ueber eine neue Art Akustischer Staubfiguren und über die Anwendung derselben zur Bestimmung der Shallgeschwindigkeit in festen Körpern und Gasen,, Annalen der Physik (Leipzig: J. C. Poggendorff) 127 (4): p.497–523.

²Tatsuya Kitamura, 2008. Intelligent Information Processing Lab, Department of Speech and Acoustics, Konan University Faculty of Information Science

Sound-wave source

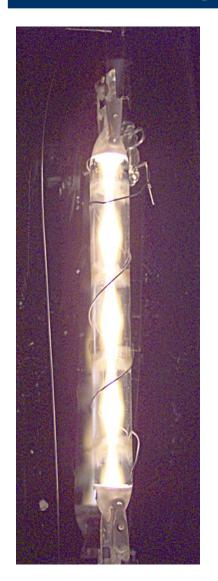
A modern demonstration²

Theory of steady streaming, Lord Rayleigh¹ 1883

- •Acoustic effect:
 - High-frequency pressure gradients
 - High-frequency velocity U
- •Streaming effect from convection:
 - •Streaming velocity **<***U***>** is the time-average of *U*.
 - Streaming flow causes observed particle clusters.
- •Streaming time scale is slower than acoustic time scale.

Outline

- Early accounts of acoustic streaming
- •High-intensity discharge lamps
- Construction of the Model
- Results
- Conclusion


What is a high-intensity discharge lamp?

- •Produces light from a discharge that is created by forcing electric current through a gas.
- •Highly efficient, used where large amounts of light are needed.
- •HID lamps consume 400-500 TWH per year of electricity worldwide.

Why should streaming in a 1.5 century-old dust tube interest a lighting company today?

A prototype lamp under acoustic excitation

- •Sound waves are generated by current modulation at a known acoustic frequency.
- "Dust" rings are molten salt made of rare-earth elements and iodine.
- •The brightest portion is called the arc which emits much of the useful light.
- •The regularly-spaced arc constriction demonstrates Rayleigh's point: net flows in the shape of smoke rings create the observed pattern.

Why model HID acoustic streaming?

Standing sound waves inside of an HID lamp are known experimentally to alter lamp behavior in both beneficial and detrimental ways:

- Stability
- Color consistency
- •Energy efficiency improvements up to 50% (100 -> 150 lpw)¹
- Arc flicker
- Wall overheating
- Extinction

Modeling exposes key fluid mechanisms to facilitate understanding, prediction, and control of acoustic streaming in HID lamps.

¹K. Stockwald, et.al., "Significant Efficacy Enhancement of Low Wattage Metal Halide HID Lamp Systems by Acoustically Induced Convection Configuration", ICOPS 2008, Karlsruhe, Germany, June 2008

What are the stakes?

- •Worldwide, lighting consumes approximately 2800 TWH/year of electricity¹.
- •At 10 cents / KWH, this electricity costs \$280 billion.
- •Gross annual income for light sources as an industry is ~ \$25 billion.
- •Each 10% improvement in efficiency covers the cost for operation of our industry.

¹R. Van Heur, "Lighting", Leonardo Energy website, www.leonardo-energy.org/

Outline

- Early accounts of acoustic streaming
- High-intensity discharge lamps
- Construction of the Model
- Results
- Conclusion

Lighthill's distinction¹ in streaming analysis

Derive governing equations for **<***U***>** from Navier-Stokes equations.

- •In RNW streaming (Rayleigh, Nyborg, & Westervelt), **<***U***>** is much smaller than *U*. This linearizes the convective dependence on **<***U***>**.
- •In Stuart streaming (1963), **<U>** is significant and its nonlinear dependence must be included. *J. T. Stuart anticipated streaming in acoustically-enhanced HID lamps*.

Model building blocks using COMSOL PDE modes: Streaming flow in HID lamp conditions

- •1: 2d Navier-Stokes.
- •2: Propagate sound waves:
 - Compressible and unsteady terms
 - Energy equation
 - Ideal gas law
- •3: Drive acoustics with electric current:
 - Current-continuity equation
 - Integration coupling variable to relate current to electric field

COMSOL solves the fully-coupled, unsteady system.

Governing equations

- •Red terms dominate on the acoustic time scale.
- •Blue terms dominate on the streaming time scale.
- •Streaming velocity:

$$\langle u_i \rangle (t) = \int_{t-2\pi/\omega}^t u_i d\tau$$

This method captures Stuart streaming

$$\frac{\partial u_{i}}{\partial t} + u_{j} \frac{\partial u_{i}}{\partial x_{j}} = -\frac{\partial p}{\partial x_{i}} - \rho g_{i} + \frac{\partial \tau_{ij}}{\partial x_{j}}$$

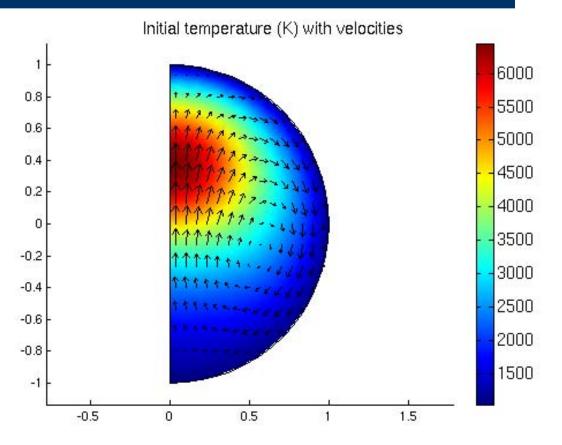
$$\frac{\partial \rho}{\partial t} + u_{i} \frac{\partial \rho}{\partial x_{i}} = -\rho \frac{\partial u_{i}}{\partial x_{i}}$$

$$\rho c_{v} \left(\frac{\partial T}{\partial t} + u_{i} \frac{\partial T}{\partial x_{i}} \right) = -p \frac{\partial u_{i}}{\partial x_{i}} + \varepsilon$$

$$+ \frac{\partial}{\partial x_{i}} \left(\kappa \frac{\partial T}{\partial x_{i}} \right) + \sigma E^{2} - q$$

$$p = \rho R_{gas} T$$

$$I = \int_{A} \sigma E dA$$


Outline

- Early accounts of acoustic streaming
- High-intensity discharge lamps
- Construction of the Model
- Results
- Conclusion

The acoustics-free case: (half of) a horizontally-running lamp shown in cross section.

Most light comes from the arc at 5000-6000 K. Gravity and density gradients cause natural convection which raises the arc above center.

Acoustic streaming in a horizontally-running lamp

Imposed current is a modulated sin wave centered with driving frequency of 30-32 kHz.

Vectors show streaming velocity **<***U*>

Display three videos:

1 – model_flicker.avi

2 – experimental_flicker.wmv

3 – flicker_mode.avi

Flickering (streaming) time

scale: 50 ms

Acoustic time

scale: 0.2 ms

Acoustic streaming used to straighten a bowed arc

Imposed current is a *swept* sin

wave of:

110-130 kHz (model)

90-110 kHz (experiment)

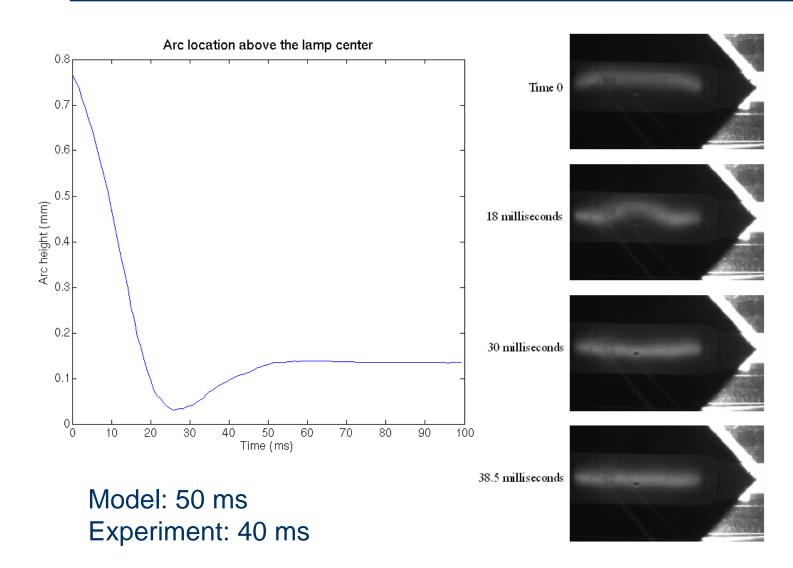
Vectors show streaming velocity

<U>

Display three videos:

1 – experimental_straightening.wmv

2 - model_straightening.avi


3 - straightening_mode.avi

Acoustic time

scale: 0.06 ms

Streaming time scale: How long did it take to straighten the arc?

Conclusion:

- •COMSOL Multiphysics is used to successfully model Stuart streaming as it occurs in acoustically-enhanced high-intensity discharge lamps.
- •We hope to use these techniques to reduce energy consumption on a global scale.

Acknowledgement: Our colleagues who have advanced the use of HID acoustics:

- Nancy Chen
- Alan Lenef
- Warren Moskowitz
- Klaus Stockwald

THANK YOU

