Modeling of Lightning Direct Effects – Interaction of Continuing Current with Aluminum Skins

Yulia Kostogorova-Beller

Robert Collins II

National Institute for Aviation Research
Hawker Beechcraft Corporation

COMSOL Conference, Boston, 2010

Overview

- Background
- Experimental Testing
- COMSOL Modeling
- Results
- Discussion
- Conclusions

Background

Lightning

- Naturally-occurring high-current, high-voltage discharge of electricity in atmosphere
 - Not entirely understood
 - Exact mechanism of electrical charge development/breakdown in the cloud
 - Stepped-leader formation/propagation
 - Ball lightning: a visual perception as a result of magnetophosphenes induced in the visual cortex due to strong electromagnetic transients ^{1,2}

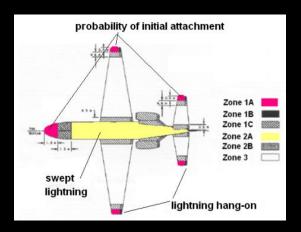
<u>Lightning and Aircraft</u>

- Aircraft is susceptible & vulnerable to lightning
- Lightning strike to an aircraft in flight may lead to a catastrophic event

¹ Peer et al. Transcranial stimulability of phosphenes by long lightning electromagnetic pulses. Physics Letters A(2010)

² Cooray, G. and V. Cooray, The open access atmospheric science journal, vol. 2, pp. 101–105 (2008)

Modern Aircraft - Aluminum & CFRP Skins


- Mechanism of lightning damage to Al & CFRP skins is different
- Lightning attachment & current propagation Direct Effects
 - Materials physical and electrical properties
 - Composite aircraft
 - $\sigma_{\text{Aluminum}} \sim 1000 > \sigma_{\text{CFRP}}$
 - Additional protection
 - Metallic meshes or interwoven wires
- In-depth understanding of how lightning may affect the integrity of aircraft structure is critical for proper protection design & safety

Lightning and Aircraft

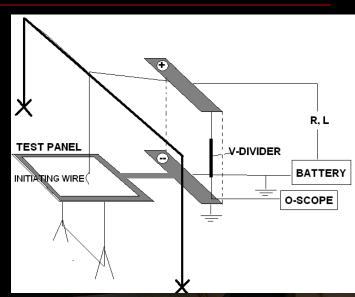
- Severity of Damage Caused by Lightning
 - Aircraft geometry dictated
 - Aircraft zones¹
- Simulated vs. Natural Lightning
 - For analysis, testing, & certification
 - Idealized current waveform components A, B, C, & D²
 - A current pulse: action integral
 - C continuing current: amount of transferred charge
 - Aircraft zones are defined by certain sequences of I-components
- Choice of Protection/Skin Thickness
 - Physical testing of aircraft skin materials
 - High-current test: laboratory-simulated lightning discharge³

Why Model Lightning?

- No attempts have been made to model physics of the direct effects
 - Develop model capable of predicting the damage
 - Reduce amount of experimental testing
 - Model cases that cannot be easily tested
- Provide a reliable tool for aircraft community able to determine the optimum metal skin thickness or protection for composite skins
- Gain Insight into Occurring Multi-Physical Processes
 - Establish a scientific base in understanding materials behavior under the conditions of simulated lightning
 - Possibly help resolving multitude of conflicting opinions

Previous Research

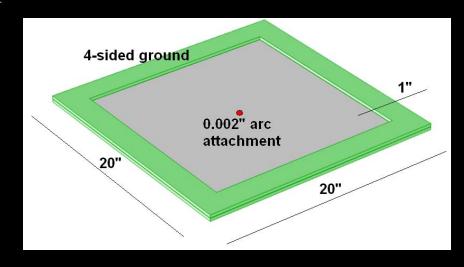
- Empirically-derived analytical expression relating constant amount of charge to the melt-through areas
- Dependency of melting effects on current amplitude
 - Rate of charge transfer may be a decisive factor in determining the damage
 - The nature of this dependence is not intuitive
- Due to insufficient experimental work large amount of data is extrapolated


Our Work

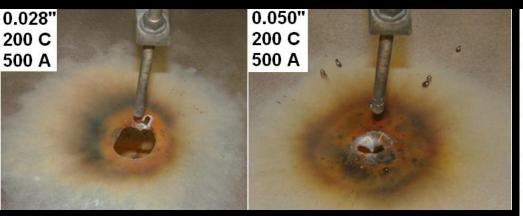

- Long-Term Goal
 - Model damage in composite and aluminum skins
 - Utilize COMSOL Multiphysics simulation environment
- Presently
 - Model continuing current characteristic of Component C in Al skins
 - Long-duration current
 - Rectangular 200-800 A waveform
 - Time 0.25-1 s
 - 200 C (±20%) of charge transfer
 - Typical Damage
 - Melt-through /hot spot formation manifesting into fuel ignition in metal skins
 - Function of material's thickness, electrical conductivity, and surface finish
 - Model Requirements
 - Employ ideal rectangular waveform input parameters
 - Investigate whether a close match with the non-ideal test conditions is possible and damage is predictable

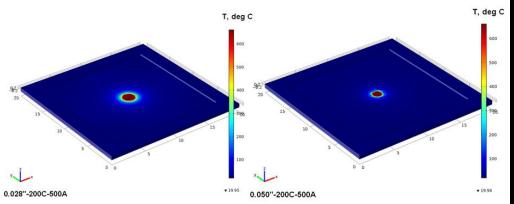
Experiment

- High-Current Direct Effects Testing
 - LTI, Pittsfield, MA
 - Continuing current (component C)
- Six-Case Study
 - Deliver 200-coulomb charge
 - At 50, 200, & 500-ampere current amplitudes
- Test articles
 - 20"-square bare 7075 aluminum sheets
 - 0.028" and 0.050" panel thickness
 - Choice of panel thickness typical aircraft skin thicknesses requirement
- Measurements
 - V-t & I-t characteristics
 - Melt-through areas

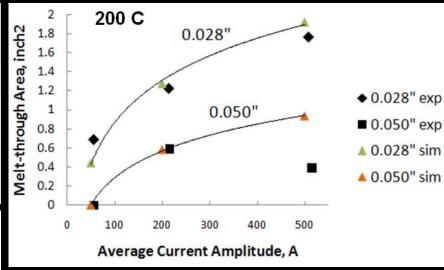

COMSOL Multiphysics

- 3D time-dependent steady-state Joule heating analysis
 - Coupled electrical-thermal interaction
 - Final time temperature distribution
 - System of governing equations

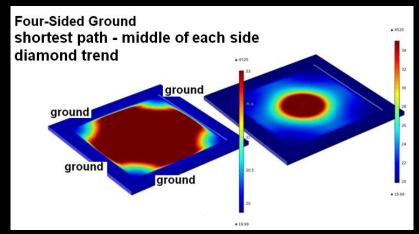

$$-\nabla \cdot \left(\sigma \nabla V - \vec{J}^{e} \right) = Q_{j}$$

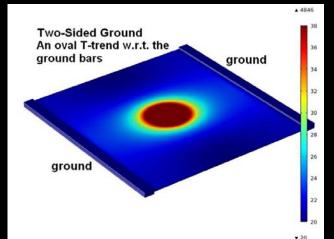

$$\nabla \cdot (-k\nabla T) = Q + q_s T$$

- Model description
 - Geometry
 - Aluminum 7075 material properties
 - Two frames ground potential
 - Attachment point high potential current injection ideal rectangular I-waveform (V=IR)
 - Resistance of the object under $IC's: 2 m\Omega$ (thin) & 1.5 m Ω (thick) panels
 - Aluminum-air heat transfer heat transfer coefficient 25 W/m²K
 - Temperature-independent Al electrical conductivity
- Extremely coarse free tetrahedral meshing
- Finite element model

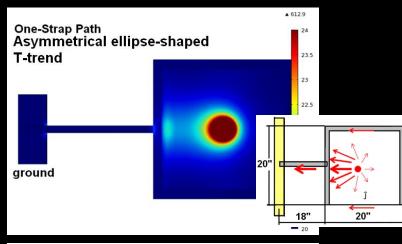


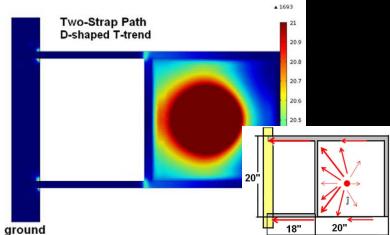
Comparison of Experimental and Simulated Damage Areas


Damage areas & simulated final T-distributions. The red areas are the damage as a result of 200 C at 500 A.



- Logarithmic dependence
- No perfect match obtained
- Imperfectly-shaped damage areas
- Deviation of experimental point
 - Atypical arc evolution
 - Insufficient experimental data
- ρ_{Al} =f(T) was not considered


Convenience of the Model


 Helps visualize influence of current return geometry on Tdistribution in the specimen

RESEARCH / DESIGN / TESTING / CERTIFICATIO

Concluding Remarks

 Demonstrated a successful effort in modeling of lightning continuing current in bare aircraft-graded Al sheets

- Next Step Model Upgrade
 - Perform transient analysis vs. time-dependent steady-state
 - Account for proper geometry of the ground return
 - Include T-dependent electrical conductivity of the test object

