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Abstract: The transport of intense ion
beams with reduced beam divergence over
reasonable drift distances requires a reliable
compensation of the beam space charge. In
the case of negative ion beams (required in
the Neutral Beam Injectors envisioned for
the ITER tokamak) this background charge
is provided by the accumulation of positive
slow ions (mainly H+

2 ) produced by ioniza-
tion of the residual gas in the drift tube, via
the reaction: H−+H2 → Hx−+H+

2 + (2−
x)e (with x = 0, 1). Primary beam currents
is about 300 A/m2, so that Poisson equa-
tion has a nonlinear space charge density
due to particles. In a flexible set of macros
called BYPO previously developed, suitable
for running under Comsol Multiphysics, the
positive ion background was represented by
a semi empirical model, reaching 100% space
charge compensation at beam core. Here a
2D selfconsistent diffusive model of the back-
ground is introduced, implemented in Com-
sol Multiphysics and solved, discussing also
its relation with more complex hydrodynam-
ics models and the previous 1D models. Us-
ing postprocessing routines, the production
of H+

2 and other secondaries is also sepa-
rately computed, finding a background pos-
itive charge roughly in agreement with this
model.
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1 Introduction

The propagation of a high charge ion beam
(despite its space charge) inside accelerator
is made possible by the curvature of the ac-
celerating field equipotentials, so that elec-
trodes should be carefully designed [1, 2, 3].
In the region after the accelerator exit, called
the drift region, the so-called space charge
compensation (SCC) (due to accumulation
of secondary particles that are slow ions

and/or electrons formed by collisions of the
ion beam with gas) greatly helps the propa-
gation of beam [4]. In most simulation codes,
this is simply modeled imposing a fixed ratio
Rsc of the secondary density respect to pri-
mary beam density Nb(x). Analytical stud-
ies, based only on a 1D radial model, does
indeed forecast a large compensation frac-
tion, say Rsc = 1.00 negative H− ion beams
and Rsc ∼= 0.98 for H+ ions at typical speed
vb = 4.4 × 106 m/s, average beam density
N0 = 5.6×1014 m−3, beam radius b = 6 mm
and gas pressure pg = 0.05 Pa. In this paper
we address the axial flow of secondary ion
with two Comsol Multiphysics models; this
flow may modify locally Rsc and can conse-
quently slightly perturb the primary beam
propagation (section 2 and 3).

Some Monte Carlo simulations with elec-
trostatic fields computed by Comsol Multi-
physics here presented in section 4 shows sig-
nificant fluctuations of the SCC. Finally in
section 5 we recall the ad hoc model of SCC
used in BYPO[2, 3] for comparison. In the
literature both radial transport 1D codes [1]
and Monte Carlo codes [5] are well docu-
mented for positive ions. Experimental ef-
fects of SCC were also discussed[6].

For negative ions, we can consider only
two major collision process, called back-
ground ion ionization and primary beam
stripping

H− +H2 → H− + e+H+
2 (1)

H− +H2 → H0 + e+H2 (2)

where we mark with an underline the fast
particles that approximately maintains the
vb speed. We may have the sum of these two
processes in one collision. The effective col-
lision cross section are about σ1 = 2× 10−20

m−2 and σ2 = 3 × 10−20 m−2 (for 100 keV
H−) [7]. In eq. 2 electrons have about 60 eV
energy, while in eq. 1 they get 10 eV energy
and H+

2 speed is not much greater than the
gas one.
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A scheme of a typical experimental situ-
ation is given in fig 1 and 2; here we take a
2D section and show two beamlets for illus-
tration (a vertical section of the ITER ac-
celerator will show 80 beamlets, while the
minimum beamlet number is of course one).
Inside accelerator, electrodes (with grids of
holes) are closer to beamlets, so they shield
any other electrode; but in the large open
spaces of the drift region, the potential VD of
the so-called drift tube enclosing the beam-
lets is important. Here by convention the
drift tube is the ground, so VD = 0 and the
potential VPA) of the last electrode PA is to
be optimized. Precisely speaking, in a 2D
zx-geometry holes and tubes become chan-
nels, with a height of 1 meter in y-direction;
for example 2Rt is the width of the drift
channel.

Before the PA we have a strong elec-
tric field Ez < 0; this field imbues the PA
holes and attracts H+

2 back to the accelera-
tor, spoiling the SCC for quite a distance; to
mitigate this, we are ready to bias VPA from
+200 V, to repel H+

2 inside the drift region.
If this is not enough, we can add a repeller
electrode REP after the PA.

In the experience with negative ion beam
(40 mA per beamlet as planned for ITER)
the SCC was generally found satisfying
enough even without PA biasing[8, 9, 10].
On the other side, repeller electrodes are
usually added at both ends of the drift tube
for intense positive ion beam (130 mA as
planned for example for IFMIF [5]) due the
greater beam quality there required.

Figure 1: A scheme of the accelerator end
section. In lower beam, some particle positions
and velocities are put into evidence; NEU is for
neutralizer. Simulation region (dashed border

rectangle) is expanded in fig. 2.

Figure 2: Simulation geometry

2 Basic equation and
simplification

Introducing a reference temperature T0 =
1 eV, we can determine a Debye length
λD = (ε0T/e2N0)1/2 where N0 is the aver-
age beam density, and a sound speed cs =
(T0/mH+

2
)1/2. With the scaled density ni =

Ni/N0 and the potential u = −eφ/T0 the
Poisson equation becomes

λ2
D 4 u = n2 − ne − nb ≡ na (3)

with the shorthand n2 = nH+
2

and nb =
nH− .

We may assume that beam is parallel ex-
iting PA and, for a short simulation region
as shown in fig. 1 and 2, the propagating
beam has no time to diverge; also we keep
beam speed vb fixed in first approximation.
So we use a fixed beam density, as a flat
beam profile nb = Θ(b − |x|) or a parabolic
profile nb = 1.5 max(0, 1− (x/b)2).

In this first model electron density is ne-
glected both for simplicity and for the follow-
ing justifications. For the greater thermal
speed of electron, ne is expect to be order
of one % of n2. Even if the electron den-
sity is known to be important for instability
suppression[6], if a stationary model would
prove that H+

2 may accumulate to compen-
sate nb fully, it is reasonable to expect that
also nb + ne can be similarly compensated.

The slow ion conservation equation is

div(n2v) = nb/λg (4)

where v is the average ion velocity (divided
by cs) and λg = cs/(Ngσ1vb) is reference
length typical of SCC; here Ng = 1.2× 1019

m3 the gas density. The momentum conser-
vation takes the form

µ(v·∇)v = ∇u− ∇p
n2T0

− v
λ2

+Rc−
nbv
n2λg

(5)

where µ = 1 to maintain the convective
term, p is the pressure, λ2 is the mean free



path, determined from (nearly) elastic col-
lisions of H+

2 with other particles, and Rc

are the other effects (if any) of those colli-
sions; the last term expresses the fact that
ions are produced by eq 1 at rest and this de-
creases the average speed [11]. It should be
noted that this continuous generation of ions
spreads the distribution of velocities (still
different from a maxwellian); [so a free-fall
model would be a possible choice, but it
seems affordable in 1D radial calculations at
most [1]]. Moreover this spread is the ori-
gin of the pressure p, given by a separated
balance equation in principle. Here we close
the equations by assuming p = n2T0..

The mean free path estimate λ2 also in-
cludes the reaction

H+
2 +H2 → H0 +H+

3 (6)

since a H+
3 will be transported similarly to a

H+
2 ion; its cross section is σ3 = 1.9× 10−19

m2 at T0 = 1 eV. In comparison the elas-
tic cross section is σ4 = 1.3× 10−19 m2 [12].
The Coulomb collisions between H− primary
were studied too, also because they may heat
the ions; both collision rate and heat trans-
fer rate (computed with the classical theory
[13]) are anyway fully negligible

2.1 The diffusion model

It can be argued that, when the beam space
charge is fully neutralized, the electric field is
small and slowly changing inside in the core
of the drift region space (the dashed ellipse
in fig 2) so that v is small and the convec-
tive term can be dropped in eq. 5. Formally
this amount to put µ = 0; after defining an
effective free path λe we solve for v as

λ−1
e = λ−1

2 + (nb/n2λg) (7)
v = λe∇(u− log n2) (8)

Substituting this in eq. 4, we get the

div{λen2(∇u)− λe(∇n2)} = nb/λg (9)

where inside the divergence operator we rec-
ognize the usual current given by the Fick’s
law (mobility+diffusion terms).

2.2 Boundary condition (bc)

Our simulation region has a very limited ex-
tension in x direction: |x| ≤ Lx/2, where Lx

is the spacing of the holes in a multiaper-
ture electrodes; in other words, our simula-
tion domain is the region common both to
a single beamlet system and a many beam-
let system. By a proper choice of bc at
lower and upper boundaries we can approx-
imately simulate both systems, also econo-
mizing problem memory size. For the single
beamlet case, we know that there is a wall
with u = 0 at a distance w = Rt− 0.5Lx (in
planar geometry) from our boundary; by a
series expansion in w we approximate u at
wall with u+ wn · ∇u at boundary, and set
this value to zero; here n is the outward nor-
mal. Introducing iw = 1/w we finally write

n · ∇u = −iwu at x = 1
2Lx (10)

For the case of an infinite array of beam-
lets, we have symmetry at upper and lower
boundaries, so that bc is eq 10 with iw = 0.
At the exit plane z = zh (in the middle of
an open space like the drift tube) we as-
sume again a simple Neumann condition. Of
course at the PA we have a fixed potential
u = uPA. At the beam input plane z = zl we
can assume that u,z(zl, x) is known by sim-
ulations on larger scales. In particular, if we
imagine that the PA hole extends even for
z < zl or that zl is in the middle of the PA
hole, we conclude that beam space charge
is symmetric around zl and does not con-
tribute to u,z, the z-derivative of u. The
lower mode of the remaining Laplace equa-
tion is u = c1 exp(−k0z) cos(k0x) with c1 a
constant and k0 = π/(2a) where 2a is the
entrance channel width. In summary

u,z(zl, x) = u1 cos(k0x) (11)

where u1 is a parameter assigned by the user.
The condition for density n2 approximately
follows from considering λen2∇u as a con-
vective flow (and −λe∇n2 as the diffusive
flow). When ions hits the PA, they immedi-
ately become neutral, so no ion can diffuse
back: convective flow has no restriction and
diffusive flow is zero, that is

n · ∇n2 = 0 (12)

At the exit plane, n2,z = 0 if we want to
obtain an equilibrium, so we can still im-
pose eq. 12. Finally at the upper and lower
boundary we can have a partial recirculation
of ions from one beamlet to another: pre-
cisely assume that a fraction Rc of the ions



that exit (if any) diffuses back. So

n · ∇n2 = max(0, Rcn2n · ∇u) (13)

Even in the many beamlet case we guess
Rc ≤ 0.5. It is indeed not realistic to take
Rc = 1 since ions escaping from one beam-
let may as well pass through beamlets and
arrive to the drift tube wall. In the case of a
single beamlet the recirculation fraction Rc

is zero, so that eq. 13 becomes eq. 12.

Figure 3: Map of the normalized ion density n2,
to enhance graph visibility, we plot the decimal

log, with a minimum displayed n2 of 0.001

Figure 4: Plot of
∫

dxn2(z, x)/
∫
nb

Figure 5: Map of the normalized charge na

Figure 6: Map of the normalized potential u

Figure 7: The normalized potential u(z, x) for
x = 0, 2, 4, 6 and 8 mm; the first two lines are
superposed (green); the last line (magenta)

touch the PA visibly

Figure 8: Plots of end potential uh = u(zh, 0)
vs PA potential uPA; also shown current of H+

2

crossing z = 0 plane (y extension= 1m).

3 Results

It is well known that eqs. 3-5 system is not
suitable for nonlinear solvers, unless proper
stabilization schemes are adopted [14, 15].
So we thus use the reduced system of eqs.
3 and 9 for a preliminary modelling (with
n2 = 1 in eq. 7). Here we restrict to the
single beamlet case, so Rc = 0 and we take
iw = 25 m−1 (corresponding to drift chan-
nel width of 102 mm). Other dimensions
are given in fig 2. We set uPA = −25 and a
modest field inside PA: u1 = 103/ m.

The more novel result noted is the distri-
bution of H+

2 ions shown in Fig 3. A cloud of
H+

2 ions extends also outside the beam. To
obtain a nearly zero potential u(z, 0) from
eq. 3 is necessary that the total charge na

integrated on all x is near to zero, and indeed
we see this compensation in fig 4. The exis-
tence of H+

2 outside the beam so implies that
inside the beam, especially near borders, we
have a local space charge compensation less
than 100 % (see the yellow lines in fig 5).

Potential u is shown in figs 6 and 7;
in this case axial compensation settles very



rapidly, so the only regions where we find
a large electric field is the PA hole; there
we found the largest unbalance of the total
space charge na (see fig 5, according to Pois-
son equation. It is interesting to plot the net
current of H+

2 (exiting from or falling inside
the PA channel, at z = 0) and the end axis
potential uh = u(zh, 0) against the uPA; see
in Fig 8: For the modest u1, any uPA ≤ −20
V suffices to keep back streaming under 30µ
A; in that range, uh is nearly constant and
about −7.

4 Monte Carlo models

Even if computationally much more inten-
sive than previous fluid models, PIC-MC
(Particle In Cell-Monte Carlo) simulations
are the standard choice[5, 16] because they
are simpler to define and they naturally fol-
low the time evolution of the system; in
particular they verify whether SCC station-
ary equilibrium is stable or not. For this
reasons, we also develop a MC tool: start-
ing from an assigned space charge distribu-
tion n0

a, the electric field is computed by
the Comsol Multiphysics solver for Poisson
equation. Then new particles are generated
continuously according to eq. 1; new parti-
cles (and the old ones if any) are advanced
with a leap-frog method for a given num-
ber Ns (typically 1) of time steps dt . After,
space charge is updated, Poisson equation is
solved again, and time evolution is resumed.
Also the H− beam trajectories can be up-
dated after a longer period dt 2, with a call
to the ’postplot’ routine of Comsol Multi-
physics.

The particles involved have quite dif-
ferent velocities, that is, vb for H− and
v2 = (2Tg/mH+

2
)1/2 with Tg = 0.025 eV

the gas temperature at start; similarly ve =
(2Te/me)1/2 for electrons with Te = 10 eV.
We get ve

∼= 106 m/s and v2 ∼= 103 m/s.
To follow the dynamics of the whole sys-

tems we should choose the characteristic
time step dt of our simulation. So, accord-
ing to electron velocity and Debye length we
obtain dt = λD/ve

∼= 1.7× 10−10 s; scaling
to a lower density beam nb = 1013 m−3, we
can use dt = 10−9 s.

The secondary production is

Rs = dN2/dt = NgN0nb(x)σ1 (14)

Figure 9: Evolution of φ(t)/φ(t = 0) at central
axis point z = Lz/2, and of normalized
particles densities vs time index t/ dt .

Figure 10: Potential well depth φ(Lz/2, 0) vs
time index t/ dt

Figure 11: Flux oh H+
2 leaving the domain vs

time. Red line: radial flux, Blue line: axial
flux. Electrons behavior is similar.

So that an effective density of secondary
ns = Rs dt is created at each time step, and
divided into an suitable number of macro-
particles whose positions are chosen ran-
domly inside the beam region with a velocity
depending on particles species.



Figure 12: The selfconsistent total space charge nax from BYPO: note that H− beam (blue or azure)
merges into the green area (net charge 0) after the red spot; some equipotential near the

postacceleration electrode PA are also shown

4.1 Monte Carlo results

The drift length Lz = 0.5 m is longer than in
the fluid simulations and the PA hole region
is omitted, setting u1 = 0 in eq 11. Lat-
eral boundary conditions are as for a single
beamlet, that is, eq 10.

In a first series of simulation, secondary
charge was zero at start, that is n0

a = −nb;
this give a huge potential well (negative for
potential φ) so that beam opens up at a first
time until SCC is enough to significantly re-
duce this potential well; after that beam can
propagate with minor perturbation.

Beam reflection was also observed with
dense beam. Due to the many time scales
involved, some time oscillation may appear
(and eventually damp): generally, ion losses
oscillate between axial and radial directions;
electron losses roughly have the opposite
phase.

The potential is expected to have a max-
imum depth at the central point z = Lz/2
and x = 0; let φR be the ratio of this po-
tential depth and its value at t = 0. Fig-
ure 9 shows time evolution of φR and of the
normalized particle densities. This depth is
drastically reduced by the accumulation of
H+

2 ions, and the neutralization is reached in
a time τn = 9×10−9 s close to the theoretical
SCC time defined as τ = 1/(σ1 ∗Ng ∗ vb) =
6.3×10−9 s. Electron apparently do not play
a role in the transient phase of compensa-
tion, since they are fastly expelled from the
beam.

In a second series of simulations, to bet-
ter analyze whether the SCC is stable or not,
the transient phase of the SCC was short-

ened by starting with a neutralization de-
gree of 99.9% . Picture 10 shows the value
of the potential depth φ(Lz/2, 0). An oscil-
lating potential is found, reflecting the way
the beams adjust for maintaining its degree
of neutralization: secondaries are expelled or
accumulated depending on their charge and
the potential oscillates between the points
of maximum accumulation of both species.
Compared to the beam accelerating voltages
of 100 kV the amplitudes of these oscillations
are relatively small, and tend to decrease in
time; their effect on beam optic is negligible
and the SCC appear basically stable. Pic-
ture 10 shows the fluxes of H+

2 ions expelled
from the beam and leaving the domain in the
axial or radial direction. Obviously the two
quantities are correlated on beam potential:
ions leaves the domain radially especially
during the H+

2 accumulating phase (φ < 0)
while, when potential becomes positive they
are expelled axially, gaining an acceleration
proportional to potential . Electrons follow
a similar dynamics with oppoaite phase. So,
in spite of the qualitative results of this sim-
ulation, an important topic was pointed out
thanks to the 2D geometry: due to the fact
that the radial potential is very small com-
pared to the axial one, particles are expelled
from the beam in all directions, meaning the
dynamic of the phenomena is not simply ra-
dial, as previously supposed.

5 Comparison with Bypo

An important new feature of the code BYPO
which addresses the whole 2D geometry of



the accelerator column was a model for the
SCC (see figure 12); anyway the simulated
span of the drift region is rather short (2
cm). For this reason an ad hoc model, tun-
able to follow results of more detailed mod-
els, was inserted into BYPO. In current no-
tation

n2 = Rsc
2 Θ(u,z)e(u−uh)/T2 (15)

ne = Rsc
e 2/(1 + e(u−uh)/Te)

where end potential uh is iteratively ad-
justed from BYPO, Rsc

2 and Rsc
e are the as-

signed fraction of density of H+
2 and elec-

trons at point (zh, 0) with respect to average
beam density as computed by a 1D analyti-
cal model[4]. In our case Rsc

2 = 0.9986 and
Rsc

e = 0.0023. Similarly T2 and Te are the
assigned ion and electron temperature (di-
vided by T0); here Te = 12.0 from that ana-
lytic model[4] and T2 = 0.8 as an user guess.
For H+

2 a maxwellian distribution was used,
which is not invalid where ions are confined;
indeed the Heaviside function Θ has the pur-
pose to limit n2 to region where the ion are
axially confined. This agrees to intuitive ex-
pectations and as saw it is not exactly con-
firmed by our 2D model.

It should be noted that even if equipo-
tential found are in reasonable agreement
with the model section 2 and 3, BYPO space
charge looks correct only on the average,
with some fluctuation apparent. The advan-
tage of more detail diffusive model over sim-
pler local model like eq. 15 is thus evident.
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