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Introduction to the problem

• The sound field in a room is characterized by the interaction
between the source and the acoustic properties of the room.

• The room’s frequency response depends on the geometry and
the materials.

• The objectives of this article are:

– Decrease the effects of the resonances at low frequencies.

– Distribute the normal modes of vibration using optimal slit resonators.

– Compare optimization strategies based on decreasing the fluctuations of
the sound pressure or loudness level.
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Introduction to the problem

• Slit resonators are composed by a periodic structure of T-like
plates. It can be described using three physical dimensions.
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Dimensional characteristics of slit resonators
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Introduction to the problem

• Two different optimization algorithms are considered
– Genetic algorithm

– Differential evolution algorithm.

• A cubical 5.1m-side enclosure with and without slit resonators • A cubical 5.1m-side enclosure with and without slit resonators 
is considered as a case of study. 

• A point source is placed at one corner of the room. The 
reception point is located at the opposite corner.

• Vertically-oriented slit resonators are considered. 

• The sound field is modeled for frequencies ranging from 20 Hz 
to 200 Hz.
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Theory and Governing Equations

• The stationary solution in the frequency domain has been 

studied only. 

• For harmonic solution, the governing equations is the 

Helmholtz’s equation.Helmholtz’s equation.
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Formulation of the Problem and Application of the 

Method of Separation of Variables
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• The sound pressure for any point     inside the room enclosure 

produced by a point source located at     of frequency
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Formulation of the Problem and Application of the 

Method of Separation of Variables
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Determination of the Loudness Levels Using 

Neuronal Networks

• Inputs:  Frequency and sound pressure level 

• Output: Loudness level (the sensation that corresponds most 
closely to the sound intensity of a stimulus)

• A loudness model has been built from equal-loudness-level 
contours data using an artificial neural network:
– Quasi Newton Back-propagation (3000 epochs and an objective goal of 

10e-5)

– Three layer feed-forward neural network: 5 hidden neurons and 1 output 
neuron.

– Transfer functions: sigmoidal hyperbolic tangent (hidden layer) and 
linear function (output layer)
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Objective Functions

SPL-based objective function Loudness level-based 

objective function
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Comparison between GA and DE – optimization using 

SPL-based Objective Function
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Comparison between GA and DE – optimization using 

Loudness Level-based Objective Function
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Optimal dimensions and comparison between objective 

functions – DE – 1000 generations

f
1
(x)Op

t x
1

(m) x
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(m) x
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(m)

37.254 0.399 0.591 0.091

SPL-based objective function
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Loudness level-based 

objective function
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Sound pressure level – DE – 1000 generations

SPL-based 
objective 

Non-optimal 

Rectangular 

room

objective 

function

Loudness level-

based objective 

function
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Loudness level – DE – 1000 generations

Non-optimal 

Rectangular 

room

SPL-based SPL-based 

objective 

function

Loudness level-

based objective 

function
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Sound pressure distribution – optimization using SPL-based 

objective function – DE – 1000 generations

Sound pressure space distribution, for axial/tangential modes f(nxy, 0) - Optimized with objective 

function based on Lp, f1(x) - Frequency band between 70 Hz and 90 Hz
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Sound pressure distribution – optimization using Loudness level-

based objective function – DE – 1000 generations

Sound pressure space distribution, for axial/tangential modes f(nxy, 0) - Optimized with 

objective function based on LL, f2(x). - Frequency band between 70 Hz and 90 Hz -
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Sound pressure distribution – optimization using Loudness level-

based objective function - DE – 1000 generations

Sound pressure space distribution, for axial/tangential modes f(nxy, 0) - Optimized with objective 

function based on LL, f2(x). - Frequency band between 100 Hz and 120 Hz
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Conclusions

• The SPL-based objective function:

• is more efficient at simultaneously decreasing 
the fluctuations of both sound pressure and 
loudness levels. 

• tries to eliminate the resonant frequencies lower • tries to eliminate the resonant frequencies lower 
than 100 Hz. 

• The loudness level-based objective function 

• tends to better control the resonances at higher 
frequencies. In this range, however, the effect of 
these resonances is less noticeable.
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Conclusions

• The spatial distribution of the sound pressure level 
is more homogenous when optimizing with respect 
to sound pressure level.

• The results of this paper indicates that the SPL-• The results of this paper indicates that the SPL-
based objective function is more efficient.

• An investigation on the influence of overall 
enclosure dimensions and the design restrictions 
on sound pressure and loudness level distribution 
is being carried out.



Acoustics Research Centre
University of Salford

Acknowledgments

R.V. gratefully acknowledges an ORSAS award and the 
University of Salford research studentship

Thank you very much for your attention. Thank you very much for your attention. 

Suggestions and comments are more 

than welcome!



Acoustics Research Centre
University of Salford

Acoustics Research Centre

University of Salford, UK

Architectural and building acoustics

Digital signal processingDigital signal processing

Outdoor sound propagation

Environmental acoustics

Virtual acoustic prototypes

Acoustics of porous materials

www.acoustics.salford.ac.uk




