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Applications for Fracture Models 
 Material Science

 Concrete
 Pavement 

 Micro-Technology
 Low permeable materials
 Low permeable membranes

 Fractured rocks in geological systems
 Subsurface waste repositories
 Geothermics

 Medicine
 Bones
 Teeth

Wang 2008

see: Jung, Orzol, Schellschmidt



  

Classification of Fracture Models

Diodato (1994) suggests a 
classification into 

 explicit discrete fracture formulations
 discrete fracture networks
 continuum formulations

 conc. fracture dimensionality
 
 full dimensional
 lower dimensional

HYDROCOIN 1.2

Wang et. al. 2008



  

Pde - Flow Options

 Matrix 
o    no-flow
o    Darcy‘s Law

 Fracture 
o    Darcy‘s Law
o    Hagen-Poisseuille Laws

• tubes
• slices

o    Navier-Stokes equations
o    Brinkman equations
o    Saint-Venant equations
o    Preissman scheme

Example: Brinkman equation
(steady state)

with symbols
u Darcy velocity
k permeability tensor
η dynamic viscosity
p pressure
θ porosity
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Differential Equations & 
Non-dimensionalisation 
Matrix:

 low hydraulic conductivity

Fracture: 
 

  high hydraulic conductivity

Normalization:

  normalized velocity

  normalized length

0lowK ϕ∇ ∇ =

0highK ϕ∇ ∇ =

1/low highK K=

0 matrix fracturev K K=

 (height)H



  

Set-up 1

Thin fracture in a constant flow field
Mathematical approach: Darcy‘s Law in Fracture and Matrix

Flow

Fracture



  

Analytical Solution

with

Complex potential for an impermeable line obstacle 
according to Churchill & Brown (1984):

2 2( ) ( cos( ) i sin( ))oz z z aα αΦ = Φ − −

α angle fracture – baseflow direction
a half length of fracture
Φ0 baseflow potential

Modification for a highly permeable fracture:
2 2( ) i ( cos( ) i sin( ))oz z z aα αΦ = − Φ − −

See also: Sato (2003)

Complex potential contains real potential ϕ in real part 
and streamfuntion Ψ in imaginary part
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MATLAB Visualization
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Numerical Solution

2D Geometry
 (di) total domain: diffusion equation for real potential ϕ 
 (di1) upper part: diffusion equation for streamfunction Ψ
 (di2) lower part: diffusion equation for streamfunction Ψ

1D Geometry (for lower dimensional case)
 (di0) diffusion equation for real potential ϕ

Couplings:
 di-di0: solutions identical at fracture (B1) 
 di1-di2: jump condition at fracture boundary, based on solution 
of di (B1)
 di1-di, di2-di: total flux as boundary condition for Ψ taken from 
solution of di (boundary integration)

Couplings are introduced using integration and extrusion variables



  

Set-up 1, Numerical Solution

Streamlines 
analytical

Streamlines 
numerical

Particle 
Tracing

Velocity 
Field



  

Set-up 2

Coupled potential equations for (real) potential and streamfunction 

Flow

Fracture



  

Meshing

local

all

for 2D full-dimensional
elliptic fracture
with half-axes ratio 1/400



  

Results; Variation of Kratio

Angle: 45°
Width: 0.01 
Kratio   : 100 (top)
  and 10000 (bottom)

1D 
lower-dimensional
fracture



  

Comparison: 1D and 2D model 
approach for fracture

1D

2D

Angle: 45°
Kratio   : 100
Width: 0.01

• Colour for (real) potential
• Streamlines from 
streamfunction
• Arrows from potential 
gradient



  

Comparison: Performance 3.4
Fracture 

Dimension
Kratio

=Khigh/Klow

# 
DOF

# 
elements

# it. Exec. Time 
(s)

1D 100 155486 38048 5 69-112-
120-172

2D 100 321176 80229 3 222-257-
260-341

1D 10000 155486 38048 13 129-156-
218-411

2D 10000 321176 80229 3 121-177-
197-329

Free mesh: normal
Maximum meshsize in fracture: 0.001
Starting from initial
Solvers: direct Spooles (linear), damped Newton (nonlinear)
Required accuracy: 10-6



  

Comparison: Performance 3.5a

Fracture 
Dimension

Kratio

=Khigh/Klow

# 
DOF

# 
elements

# it. Exec. Time 
(s)*

1D 100 155486 38048 5 17.8

2D 100 321176 80229 3 27.8 

1D 10000 155486 38048 32 104 

2D 10000 321176 80229 3 26.9

Free mesh: normal
Maximum meshsize in fracture: 0.001
Starting from initial
Solvers: direct Spooles (linear), damped Newton (nonlinear)
Required accuracy: 10-6

* mean from 4 runs



  

Evaluation Set-up 2
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Increased Flux – compared to the no-fracture situation
   in dependence of Kratio and fracture angle (in legend given as slope) 



  

Animation of Heat Transfer

Cold water replacing hot water from the left side
Times: 20, 40, 60 (top); 80, 100, 120 (bottom)

obtained with 2D fracture representation with constant width

20 40 60

80 100 120



  

Conclusions 
 For lower-dimensional fracture representations 

streamlines through fractures can not be obtained 
by particle tracking from the (real) potential 
solution

 Streamlines can be obtained by either using a 
full-dimensional approach or using the lower-
dimensional streamfunction with jump condition at 
the fractures

 Execution time of 2D approach, despite of higher 
DOF, is smaller and this advantage is more 
pronounced for finer meshes



  

Conclusions conc. fracture networks from 
lower dimensional fractures

  Numerical solutions for lower and full-
dimensional solutions coincide.

  For single lower-dimensional fracture numerical 
solutions converge against analytical solution for 
Kratio→∞

 but: analytical solutions can not be combined for 
fracture networks (even not non-intersecting); 

 for numerical solutions, including streamfunction, 
the entire model region has to be sub-divided in 
simply connected sub-regions.

Merci beaucoup
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