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IntroductionIntroduction

A t i d f d t i ti f bl d> Arteries deform due to variation of blood pressure
→ Windkessel effect (elastic energy storage during systole)

> This cyclic deformation can be used to move an electric conductor y
in a magnetic field
→  an electric field is induced

> A load can be connected to the electric conductor’s terminals> A load can be connected to the electric conductor s terminals
→  energy is extracted

http://www.physiologie-online.com/ana_site/physio07.html



Electro-Magneto-Hydrodynamics (EMHD)Electro-Magneto-Hydrodynamics (EMHD)

BuE flowind  f

Friedrich Hofmann, Fundamental principles of 
Electromagnetic Flow Measurement, 3rd Edition, KROHNE 
Messtechnik GmbH & Co, 2003

> Proposed concept: Use deformation of arterial wall through 
variation in blood pressure to drive a highly electrically conductive 
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fluid in a compartment outside the artery.



Geometry and PrincipleGeometry and Principle

A t di i 20 l th 10 ID 12 OD> Artery dimensions: 20 mm length, 10 mm ID, 12 mm OD
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Simulation SetupSimulation Setup

5 li ti d d i COMSOL> 5 « application modes » used in COMSOL:
— Incompressible Navier-Stokes
— Solid, Stress-Strain
— Moving Mesh
— Magnetostatics, No Current
— Conductive Media DCConductive Media DC

> Mesh partly drawn manually:
f— avoid element inversion due to mesh deformation

— ensure proper meshing at the boundaries between the different physics
— reduce computational efforts
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Application Mode # 1Application Mode # 1

I ibl N i St k> Incompressible Navier-Stokes
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Body force, e.g. gravity
Viscosity
Pressure gradientPressure gradient
Convective acceleration
Unsteady acceleration

Lorentz-force against fluid motionBJF 
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Application Modes # 2 3 & 4Application Modes # 2, 3 & 4

S lid St St i (i t i li l ti t i l)> Solid, Stress-Strain (isotropic, linear elastic material)

  D

> Moving Mesh (mesh nodes are perturbed to conform with the 
i b d i )moving boundaries)

 
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tYXxx ,,

> Magnetostatics, No Current

 tYXyy ,,

0)( 0  rmr BV
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Application Mode # 5Application Mode # 5

C d ti M di DC> Conductive Media DC

Lorentz and Coulomb forces Material lawLorentz and Coulomb forces            Material law
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Charge conservation
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Summary

E ti

Summary

> Equations
Conservation of mass

C ti f tu

u



 0

2 Conservation of momentum
Stress-Strain, linear elastic
Magnetic potentialBV
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Magnetic potential
Electric potential

> Couplings:
 BuEJBu

BV rmr
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Couplings:
— Fluid ↔ Structure: surface load, moving wall
— Structure → Moving mesh

EMHD: BJFBE— EMHD:

> Constraints:
— Symmetry, fixed/free walls, magnetic/electric insulation…

BJFBuE  ,

y y, , g
— Kirchhoff's mesh rule for the generator and load resistor
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Solver sequenceSolver sequence

St ti> Stationary:
— Solve for internal resistance of tube
— Solve for distribution of magnetic field

> Transient (segregated solver, two groups):
Group 1: Fluid structure interaction (Incompressible Navier Stokes +— Group 1: Fluid-structure interaction (Incompressible Navier-Stokes + 
Solid, Stress-Strain + Moving Mesh)

— Group 2: Electrical domain (Conductive Media DC + Kirchoff‘s mesh 
rule)rule)
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Running the SimulationRunning the Simulation

Input: pressure pulse                                    Output: power
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Arterial Wall and Membrane DeformationArterial Wall and Membrane Deformation
x- and z-Velocity

y
z

x



Magnetic flux densityMagnetic flux density
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Electric Potential & Current DensityElectric Potential & Current Density
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Validation of the Simulation

Q lit ti I fl f f t ti th fl id’ ti

Validation of the Simulation

> Qualitative: Influence of force counteracting the fluid’s motion
> Quantitative: Energy conservation

Energy production per cardiac 
cycle for 1/8 of the geometry:

26 4 J+ 26.4 nJ

Difference in strain energy of 
arterial wall when energy is 
extracted:
- 29.4 nJ

→ Error: 11%
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ConclusionConclusion

U i th lti h i biliti f COMSOL it h th t> Using the multiphysics capabilities of COMSOL, it was shown that 
the proposed concept can be simulated

> The simulation was validated by considering energy conservation: 
the error between loss of elastic energy stored in arterial wall and 
generated energy amounts to 11%

> A parameterised evaluation is necessary to find the optimal 
geometry in terms of generated power
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