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Abstract: Phononic crystals are a class of 
materials that exhibit periodic variations in their 
density and elastic properties. Such crystals 
modify the propagation of acoustic waves and 
prohibit the propagation of sound for frequencies 
within the band gap. They have enabled exciting 
new ways to control sound in particular in the 
field of wave guiding and filtering, using point 
and linear defects introduced in the crystal, as 
well as in the field of sound isolation. In the 
photonic crystal counterpart, the medium is made 
up with a periodically modulation of the 
refractive index between their constituents. Their 
performance is determined by frequency gaps, 
forbidden for the propagation of the 
electromagnetic waves. In this work, we discuss 
the simultaneous existence of phononic and 
photonic band gaps in a periodic array of silicon 
pillars deposited on a homogeneous SiO2 
membrane.  

Keywords: phononic, photonic, phoxonic, band 
gaps. 
 
1. Introduction 
 

Phononic crystals are a class of materials that 
exhibit periodic variations in their density and 
elastic properties [1, 2]. Such crystals modify the 
propagation of acoustic waves and prohibit the 
propagation of sound for frequencies within the 
band gap. They have enabled exciting new ways 
to control sound [3, 4]. Recently, an issue of 
interest is based on the study of phononic crystal 
slabs for potential applications as platforms for 
integrated technological circuits [6-10]. 
      In the photonic counterpart, the medium is 
made up with a periodically modulation of the 
refractive index between their constituents also 
producing band gaps in which the propagation of 
electromagnetic waves is forbidden [11]. The 
existence of photonic band gaps for guided 
modes in periodic crystal slabs offers new 

possibility to control the light in integrated 
photonic devices [12-14].  
       The simultaneous existence of photonic and 
phononic band gaps and the confined phonon-
photon interaction have been investigated in 1D 
multilayer structures [15]. In infinite 2D 
structures, relatively few works have been 
devoted to simultaneous control of phonons and 
photons [16, 17]. Some recent papers are also 
dealing with the opto-mechanical crystal slabs 
that sustain both the optical and mechanical 
excitations [18]. In two very recent papers, we 
and another group [19, 20] demonstrated the 
existence of dual phononic and photonic band 
gaps in 2.5D crystal plates composed of arrays of 
void cylindrical holes in silicon slabs with a 
finite thickness. 
      The main goal of this paper is to demonstrate 
the existence of dual phononic-photonic band 
gaps in the new type of structure constituted by a 
periodic array of pillars deposited on a layer of 
finite thickness. We concentrate our calculations 
on a structure where the pillars and the 
supporting plate are respectively made of silicon 
and silica (SiO2). We investigate both the 
phononic and photonic band structures in three 
types of lattices, namely square, triangular and 
honeycomb and for a wide range of the 
geometrical parameters. In general, the phononic 
and photonic band structures are respectively 
calculated by finite element (FE) and by plane 
wave expansion (PWE) methods. However, 
finite difference time domain (FDTD) method 
has also been used to check the correctness and 
convergence of the results. 

Section 2 describes the geometries 
considered in this paper as well as the methods 
of calculation. Section 3 contains the trends of 
the band gaps as a function of the lattice and the 
geometrical parameters for phononics and 
photonics respectively and presents the most 
appropriate geometries exhibiting dual band 
gaps. Conclusions are given in section 4. 
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2. Geometry and method of calculation 
 

Figure 1(a) represents the general schematic 
view of the periodical structure of cylindrical 
silicon pillars deposited on a thin SiO2 plate. The 
elastic constants and mass densities of the 
materials are given in Table I (see Appendix). 
The z axis is chosen to be perpendicular to the 
plate and parallel to the cylinder axis. By 
considering the lattice period a as the unit of 
length, there are several geometrical parameters 
involved in the problem, namely the height hSi of 
the pillars, the thickness eSiO2 of the slab and the 
fil ling fraction f. 
      The phononic band structures are calculated 
by using the finite element (FE) method with the 
COMSOL Multiphysics finite element software. 
Only the solid materials are meshed (Fig. 1(b)) 
since elastic waves obviously cannot propagate 
in vacuum. Periodic boundary conditions, using 
the Bloch-Floquet equations, are applied at each 
side of the plate, assuming an infinite and 
periodic structure in the (x, y) plane. 
 

 
Figure 1. (a) Schematic view of the periodic crystal 
made up of cylindrical Si pillars on a SiO2 plate. 
Representation of the unit cell used for: (b) the FE 
(phononic) and (c) the PWE (photonic) calculations. 

 
 
Figure 2. Square, triangular and honeycomb 
arrangements of the lattice crystal made up of 
silicon cylinders deposited onto a SiO2 
homogeneous plate and their corresponding 
Brillouin zone. 

 
On the photonic side, the calculations of the 

dispersion curves are performed by using the 
developed PWE code with periodic conditions 
applied on each boundary of the unit-cell (see 
Fig. 1(c)). In this case, the thickness of the air 
slab separating neighboring photonic crystals in 
the z direction has been chosen such that to 
decouple them. Let us also mention that in the 
slab geometry, the photonic gaps have to be 
searched only below the light cone in vacuum. 
The air thickness has been chosen equal to 
hair/a=4.0 to insure the stability of the whole 
branches under the light cone and the 
calculations have been performed with a number 
of plane waves equal to 2499. Calculations and 
convergences have also been checked using the 
finite difference time domain method (FDTD) 
with a good agreement. 
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      As illustrated in figure 2, we have 
investigated several lattices, namely square, 
triangular and honeycomb where the 
corresponding Brillouin zones are represented in 
figure 2(b). The filling fractions of the 
cylindrical pillars are respectively given 
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square, triangular and honeycomb array, where r 
is the radius of the cylinder. 
      In both phononic and photonic cases, the 
wave vector is chosen along the high symmetry 
axis of the first Brillouin zone and the 
eigenfrequencies are obtained by solving the 
eigenvalue equation. In all the band structures 
presented in the paper, the frequencies are given 
in the dimensionless unit Ω=ωa/2πc where c is 
the velocity of light in vacuum for 
electromagnetic waves and the transverse 
velocity of sound in silicon for elastic waves. 
 
 

 
3. Phononic/Photonic band gaps 
 
      Figure 3(a) displays the map of the phononic 
band gaps for the three lattices as a function of 
the normalized height hSi/a of the pillars, 
assuming a constant and relatively small value of 
the thickness of the plate eSiO2/a=0.1. In all three 
cases, one can observe the opening of gaps (grey 
areas) as far as the height of the pillars exceeds 
0.3a. In the frequency range of the Bragg 
diffraction, around [0.3, 0.5], we note the 
existence of two band gaps in all configurations. 
In the square and triangular lattices, these band 
gaps fall around nearly constant frequencies of 
Ω=0.35 and Ω=0.45, independently of the height 
of the pillars. These gaps are separated by a 
narrow pass band. The latter is essentially 
constituted by nearly flat branches associated to 
modes which are mainly localized at the corners 
of the unit cell inside the thin plate, without too 
much penetration into the pillars. 

 
Figure 3 Evolution for the square, triangular, and honeycomb arrays of the phononic (a) and photonic (b) 
band gaps as a function of the height of the pillars hSi/a, for eSiO2/a=0.1 or hSi/a=0.7. The filling factors of 
the pillars are kept at moderate values of f=0.4 (square), f=0.5 (triangular) and f=0.3 (honeycomb). 
 

In addition, for the square and triangular 
lattices, a narrow gap can also exist at lower 

frequencies (Ω<0.2), much below the Bragg 
regime, where the wavelength in all constituting 

(a) 

(b) 



materials is at least 10 times larger than the 
period of the lattice. The origin and existence 
condition of this gap, which presents some 
similarity with the behavior in locally resonant 
sonic material [4], was discussed in detail in ref. 
[8] for the square lattice geometry. In particular, 
it was shown that the existence of this gap 
requires a very thin plate (e/a≈0.1) and also the 
height of the pillars should be a moderate 
fraction of a as can be seen in Figure 3(a). The 
triangular lattice is the one that exhibits the 
largest gap over a wider range of the geometrical 
parameters. Let us remember [19, 20] that in a 
structure constituted by periodic holes in a Si 
membrane, the triangular lattice is not at all 
suitable to exhibit phononic band gaps. 
      We present Figure 3(b) the trends of the 
photonic band gaps maps as a function of the 
height hSi/a of the pillars, for a constant value of 
the thickness of the plate eSiO2/a=0.1. In all 
investigated lattices, one can see clearly the 
existence of a complete photonic gap (grey 
areas) which, however, closes faster than in the 
phononic case when increasing the height of the 
pillars. More precisely, for eSiO2/a=0.1, the gap 
exists when the height of the pillars hSi/a is 
chosen in the range [0.4, 0.9] for the square and 
triangular arrays and in the narrower range of 
[0.6, 0.8] for the honeycomb lattice. Actually, it 
would be desirable to have the frequency of the 
photonic gap as lowest as possible, which means 
choosing the highest possible values of hSi/a 
around 0.7 to 0.8. Otherwise the gap covers only 
a very small area of the Brillouin zone just below 
the light cone and therefore becomes not very 
useful for practical applications. 
      We have clearly demonstrated the existence 
of complete phononic and photonic band gaps 
for the three investigated arrays of silicon pillars 
on a thin SiO2 plate. The conditions on the 
geometrical parameters to obtain dual band gaps 
can be expressed as follows. For all arrays, the 
existence of a phononic gap requires heights of 
the dots higher than half time the lattice 
parameter. The existence of a photonic gap 
imposes to choose the height of the pillars as a 
fraction of the period (hSi/a≈0.4-0.9). In practice, 
to avoid the photonic gap to occur only in a very 
restricted domain of the Brillouin zone just 
below the light cone, it would be suitable to 
decrease its frequency and therefore to choose 
the highest possible value of hSi/a, around 0.8 
(red dashed lines in Figs. 3). 

      Of course the actual frequencies in Figs. 3 
scale inversely with the real dimensions of the 
structures. As an example, we can assume that 
the photonic midgap should occur at the 
telecommunication wavelength region around 
1550 nm. Then all the geometrical parameters 
become totally determined and the corresponding 
phononic gap falls in the range of a few GHz. 
 
4. Conclusions 
 
      We have theoretically demonstrated that a 
periodic array of silicon pillars deposited on a 
thin homogeneous SiO2 layer exhibits dual 
phononic/photonic complete band gaps in the 
three most common lattices, namely square, 
triangular and honeycomb. The geometrical 
parameters appear to be quite compatible with 
the technological fabrication facilities. In 
addition, the triangular lattice is an interesting 
lattice in view of the creation of defects such as 
waveguides and cavities similarly to the case of 
usual photonic crystals. These properties will be 
investigated in subsequent works. 
      Phononic and photonic crystal slabs hold 
promises for the simultaneous confinement and 
tailoring of sound and light waves with potential 
applications to acousto-optical devices and 
highly controllable photon-phonon interactions. 
The new structure studied in this paper presents 
an alternative with respect to the more common 
structure constituted by a periodic array of air 
holes in a silicon membrane. In the latter case, it 
has been shown [22,23] that a complete photonic 
gap occurs only for a restricted range of the 
geometrical parameters in the honeycomb and 
boron nitride lattices, while for a wide range of 
parameters the phononic gap is accompanied 
only by a photonic gap with a given polarization 
(odd or even). Instead, in the case of pillars, the 
complete gaps can exist over a wide range of 
parameters. In addition, it is not required to 
choose a relatively high filling fraction, in 
contrast to the case of air holes in silicon. 
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7. Appendix 
 
Table 1: Physical characteristics of the used 
materials: ρ is the density, C11, C12 and C44 are 
the three elastic moduli and n is the refractive 
index. 
 

Constant Silicon (Si) Silica 
(SiO2) 

ρ (kg/m3) 2331 2275 

C11 (N/m²) 16.57x1010 7.50x1010 

C12 (N/m²) 6.39x1010 2.25x1010 

C44 (N/m²) 7.962x1010 3.0x1010 

n 3.5 1.5 

 




