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Abstract: Numerical analysis based on finite 

element method (FEM) represents a powerful 

approach to solve electromagnetic problems. For 

instance, FEM methods have been broadly used 

to calculate the critical state current distribution 

in high temperature superconductors of various 

geometries. In the near future, we intend to 

develop a tool in COMSOL v3.5a for the 

analysis of power applications, such as motors 

and generators. To get an insight into the 

problem, we have first used COMSOL to obtain 

the electromagnetic solution for a simple 

superconducting geometry, a rectangular infinite 

slab, for which analytical and numerical 

solutions are documented. We discuss the 

verification of the method, and computing times 

obtained using different mesh densities and 

element polynomial shape functions. 

Keywords: electromagnetic finite element 

method analysis, superconductivity, shape 

functions, mesh density, Partial Differential 

Equations (PDE). 

 

1. Introduction 
 

igh temperature superconductors (HTS) can 

be used in many different applications, such 

as motors, generators, cables etc. This has 

motivated the study of the electromagnetic (EM) 

behavior of these materials, shaped in the 

different forms required for integrating them in 

devices. The critical-state model [3] has been 

used to solve this kind of problems for a handful 

of 2D or axi-symmetric geometries. An 

alternative and powerful approach is to use Finite 

Element Methods (FEM) based upon Maxwell 

equations to tackle EM problem, obtaining the 

distribution of currents, flux penetration and 

magnetization cycle in a sample when an 

external field is applied, among the possibility to 

solve thermal and mechanical items exploiting 

the multi-physics capability nowadays extended 

in some commercial FEM packages.  COMSOL 

v3.5a is versatile, commercially available FEM 

software, which includes an EM package for 

solving Maxwell Partial Differential Equations 

(PDE). In our group, we intend to apply 

COMSOL v3.5a to simulate certain designs of 

superconducting motors. The aim of this work 

was to evaluate the results and time performance 

of COMSOL v3.5a by applying it first to a 

simple geometry for which the solution is 

approximate by using the solution found by 

Brandt for the critical state for HTS slabs and 

strips [2], integrating the 2D time dependent 

Maxwell equations at low frequency with the 

nonlinear constitutive relation between current 

density and electric field (Eq.3) for a HTS and by 

solving numerically the critical state [7]. We 

have considered a HTS slab of rectangular cross 

section 2ax2b and infinite length, under a 

sinusoidal magnetic field, applied perpendicular 

to it (Fig.1). The EM problem is then 

bidimensional, non-linear and time dependent. 

We have analyzed the verification and required 

computing time as a function of the mesh density 

and type of polynomial shape functions used. 

 

2. Simulation procedures 

 

 

 

 

 

 

 

 

 

Figure 1. Rectangular HTS slab with infinite 

length (HTS) applying a magnetic source field 

perpendicular to the sample 
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2.1 PDE equations 

 

The electromagnetic PDE considered are:  
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where µ0 is the vacuum permeability; E and H 

are the electrical and magnetic fields, 

respectively, and Jz is the current density in z-

direction, being XY in the plane of the slab and 

Z the out-of-plane coordinate as fig. 1 shows. 

In addition, we assumed a constitutive 

power-law relation between the electrical field 

and current density [1, 4, 5] for HTS domain 
n
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with E0=10
-4

V/m, and typical exponent values of  

n=21, and the critical current density Jc=8x10
-7

 

A/m
2
.  

The applied magnetic field changes 

monotonically at a very low frequency, 10
-4

 Hz, 

so as to obtain an EM solution close to that of the 

critical state. Quantification of the effect of that 

frequency over the results and how can it be 

linked to the exponent n will be reported. 

 

2.2 Mesh and solver parameters 

 
For the mesh design, we used triangular 

advance front elements with a minimum quality 

of 0.6 [9]. We used also Curl Elements allowing 

continuity of the tangential component of the 

field at each element boundary. This condition is 

obtained just in the boundary of the element but 

not inside it, allowing the propagation of the 

field in tangential and normal components [6]. 

The software supports Curl elements with linear, 

quadratic or cubic polynomial functions.  

The problem was solved with Unsymmetrical 

MultiFrontal direct solver (UMFPACK) [10] for 

sparse matrices, with a relative tolerance and 

absolute tolerance of 0.01 and 0.0001 

respectively [8]. Time dependent analysis uses 

Backward Differentiation Formula (BDF) [11]  

Simulations were done in an Intel ® Core ™ 

i7 computer at 2.67GHz, with 16GB RAM and 

S.O. Windows 7, 64bits. 

  

3. Simulation results 
 

3.1 COMSOL solution versus critical-state 

based methods. 

We simulated with COMSOL the current 

distribution and flux penetration as the applied 

magnetic field was cycled, as well as the 

penetration field Hp for slabs of different aspect 

ratio b/a. Hp is defined as the minimum applied 

field required to magnetize the center of the 

sample (see schematics in Fig. 2). These 

simulations were done using a constant mesh 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Typical magnetization curve for a 

HTS [8]  



Figure 3.  Normalized field penetration of a 

rectangular bar cross section 2ax2b in a perpendicular 

magnetic field using current-voltage power law 

represented for aspects ratio, b/a, of 0.01, 0.02, 0.05, 

0.0625, 0.075, 0.1, 0.125, 0.2, 0.25, 0.5, 0.75, 1, 2, 5, 

7.5, 10; obtained with COMSOL v3.5a  (green line) 

Brandt’s method (red line) and CSM (blue line).  

 

density of 4 triangular (advance front) Curl 

elements/mm
2
 and a second degree polynomial 

shape function 

 Fig. 3 plots the normalized penetration field 

Hp/Jc·a as a function of the aspect ratio b/a 

obtained with COMSOL v3.5a, compared to the 

curves predicted in the critical-state model 

context by (CSM) [7], and (Brandt) [2]. 

 
 

A low deviation between all the curves is 

observed. In order to better quantify the 

deviation of COMSOL v3.5a results from the 

other methods, we can define the relative 

deviation at a certain i=b/a ratio as:  

( )
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= −   (Eq.4) 

where Ci is the result obtained using COMSOL 

v3.5a, and Ai is the value obtained by either 

Brandt’s solution or CSM. Then, the average 

relative deviation rE over the whole curve can 

be calculated as: 
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being N the total number of aspect ratios 

considered.  

 The average deviation observed by 

COMSOL v3.5a relative to Brandt’s results is 

7.68%, and relative to the CSM is 3.8%. The 

maximum deviation between COMSOL v3.5a 

and Brandt (18.64%) occurs at b/a=0.125 and by 

CSM (7.93%) occurs at b/a=0.01. 

 Fig. 4 shows that the deviation between 

COMSOL v3.5a and Brandt’s calculations 

decreases when the aspect ratio increases. The 

deviation from the CSM is smaller, and 

decreases at a smaller rate with the aspect ratio.  

 We turn now our attention to the current 

density profiles obtained as an increasing applied 

magnetic field is applied to the sample. Fig. 5 

shows the profiles simulated by COMSOL v3.5a 

for different aspect ratios. We have again 

compared the field profiles obtained by 

COMSOL v3.5a to those calculated by Brandt 

solution. Table 2 summarizes the maximum 

 
Figure 4.  Deviation in the  value of the field 

penetration simulated by COMSOL v3.5a for slabs of 

different aspect ratio b/a=0.01, 0.02, 0.05, 0.0625, 

0.075, 0.1, 0.125, 0.2, 0.25, 0.5, 0.75, 1, 2, 5, 7.5 and 

10, relatives to results calculated by Brandt (red points) 

and the CSM (blue points). Lines are guides-for-the-

eye.  

b/a 0.01 0.02 0.05 0.0625 

Brandt 14.4 6.65 12.96 14.71 
ir

E (%) 

CSM 7.93 6.4  0.46  1.31  

b/a 0.075 0.1 0.125 0.2 

Brandt 15.42 13.92 18.64 6.99 
ir

E (%) 

CSM 1  1.26  2.94 5.53 

b/a 0.25 0.5 0.75 1 

Brandt 4.71 8.25 5.29 8.06 
ir

E (%) 

CSM 7.68  1.47  2.72  1.7 

b/a 2 5 7.5 10 

Brandt 2.43 1.88 2.03 0.4 
ir

E (%) 

CSM 0.3 0.32 1.2 3.63 

Table 1.  Relative deviation between the result obtained 

by COMSOL v3.5a, and those of the CSM and reported 

by Brandt, at aspect ratios b/a=0.01, 0.02, 0.05, 0.0625, 

0.075, 0.1, 0.125, 0.2, 0.25, 0.5, 0.75, 1, 2, 5, 7.5 and 10.  

COMSOL-CSM 



relative deviation observed between a COMSOL 

v3.5a and a Brandt’s profile line, and the average 

deviation considering all profile lines, for each 

aspect ratio. 

 

 As shown in table 2, the average deviations 

observed in the current density profiles are lesser 

than 4 % compared with Brandt’s calculations.  

In conclusion, we cannot observe a great 

difference in the results obtained by both 

procedures considering that the CSM and Brand 

approaches neglect the non equilibrium currents 

which are time dependent. The quasi-static FEM 

solution fits the equilibrium solutions reasonably 

well. Fitting quality as a function on the 

frequency and the n exponent is on the way. 

3.2 Performance as a function of the mesh 

density and polynomial element shape 

function. 

In order to show the performance of the 

calculation, in this section, we present the results 

obtained for a fixed aspect ratio, b/a=0.5, at 

different mesh densities and polynomial element 

shape function orders. 

 Table 3 summarizes the values of the 

penetration field Hp obtained with COMSOL 

v3.5a at different mesh densities (in elements / 

mm
2
) using polynomial shape functions of 

degree k=1, 2 and 3.   

 

 
 
Figure 5.  Current density fronts during penetration 

of a gradually increased field Ha (vertically 

oriented) into rectangular cross section infinite 

length bars of aspect ratios b/a=2, 1, 0.5, 0.25, 

0.125 and 0.0625 (from top left to bottom). The 

contours of Jz(x,y)=Jc/2 for the field values 

Ha/Hp=0.05, 0.1, 0.2…. 0.9, 1 obtained with 

COMSOL v3.5a are shown. 

AR/
rE  ( )

ir
Emax  

rE  

2 0.8 1.1 

1 1.9 1.27 

0.5 1.1 1.14 

0.25 5.1 2.31 

0.125 4.2 3.67 

0,0625 4.8 3.98 

Table 2.  Maximum and average errors between 

the current distribution obtained by COMSOL 

v3.5a and Brandt’s method, for aspect ratios of 

b/a= 2, 1, 0.5, 0.25, 0.125 and 0.0625.  

[Element/

mm2] 

Polynomial shape function degree 

 k=1 k=2 k=3 

 Penetration field measures  [A/m] 

1e-2 6.5057e5 6.506e5 7.965e5 

4e-2 6.693e5 8.78e5 7.993e5 

8.5e-2 7.825e5 8.6363e5 8.077e5 

16e-2 7.9645e5 8.6363e5 8.188e5 

64e-2 8.6735e5 8.36325e5 8.371e5 

256e-2 8.5244e5 8.7912e5 8.492e5 

Table 3.  Penetration fields applying mesh densities of 

0.01, 0.04, 0.085, 0.16, 0.64 and 2.56 elements/mm2 and 

for element polynomial shape functions of order 1,2 and 3 

obtained with COMSOL v3.5a. 

 



 For comparison, the analytical value of Hp 

for a b/a=0.5 bar is Hp=8.72377e5 A/m [2]. 

As shown in Fig. 6, in order to make 

simulations with a relative deviation lesser than 

5% it is possible to use a linear shape function 

with a minimum mesh density of 0.5 

elements/mm
2
; or a quadratic function with a 

mesh density of at least 0.05 elements/mm
2
. 

 It is also interesting to analyze the computing 

time consumed for each mesh density and shape 

function applied (table 4 and Figure 7). It is clear 

that the time consumed with a k=3 shape 

function is very high compared with that 

consumed when using a k=2 or a k=1 with the 

same mesh density. 

 

4. Conclusions 
 

COMSOL v3.5a is a very attractive approach 

to solve at least EM problem in superconducting 

materials of various shapes. By analyzing a 

simple bidimensional problem of a rectangular in 

a magnetic perpendicular field, we have been 

able to conclude that COMSOL v3.5a is able to 

correctly describe the physical EM problem and 

achieves a high precision.  

 In addition, the software time performance 

has been analyzed as a function of two important 

FEM parameters, the mesh density and the 

degree of the shape function. We can conclude 

that second order shape functions can be used to 

obtain acceptable results at reduced mesh 

densities. More specifically, with a mesh density 

of 0.05 el./mm
2
 and a k=2 shape function, the 

field penetration can be calculated with a relative 

deviation of 1.5% and the computer time is 160 

s, thus these conditions are highly recommended 

for this kind of problem. When using a linear 

polynomial shape functions, k=1, a large mesh 

density is required to obtain a deviation smaller 

than 5%, but the computing time is still 

acceptable (300 s).  
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Figure 6.  Relative deviations of field penetration 

observed for mesh densities 0.01, 0.04, 0.085, 0.16, 0.64 

and 2.56 elements/mm2 and for element polynomial 

shape functions of order k=1, 2 and 3 obtained with 

COMSOL v3.5a. 

[Elements/mm
2
] Polynomial shape function 

degree 

 k=1 k=2 k=3 

 Computing time [s] 

1e-2 4 48 1498 

4e-2 5 160 13164 

8.5e-2 62 3010 60285 

16e-2 65 7200 117360 

64e-2 372 10800 500000 

256e-2 9043 60000 1500000 

Table 4.  Time consumed to obtain the penetration field 

applying mesh densities of 0.01, 0.04, 0.085, 0.16, 0.64 

and 2.56 elements/mm2 and for element polynomial 

shape functions of order k=1, 2 and 3 obtained with 

COMSOL v3.5a  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7.  Time consumed by COMSOL v3.5a to 

obtain Hp for mesh densities 0.01, 0.04, 0.085, 0.16, 

0.64 and 2.56 elements/mm2 and for element 

polynomial shape functions of order k=1, 2 and 3. 
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