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Ultrasound imaging transducer and FEM 

• Ultrasound imaging transducers generate a pressure field into the human body 
• Differences in acoustic properties of different types of tissue allow the scanner to generate an image 
• Quality of the resulting image is strictly related to: 

– technology level of the materials involved in the transducer manufacturing  
– understanding of their interactions  

• Simulations greatly help in the study and optimization of transducer electroacoustical performances 
and image quality improvement 

Scanner Device Ultrasound Probe 
(piezoelectric transducer) 

Human Body 

Pressure wave Electric signal 

KLM + FEM 
Image 
quality 



COMSOL Conference, Stuttgart 2011 

Design and Optimization of a high 
performance ultrasound imaging probe 

3 3 

Mono-dimensional electro-acoustical circuit model (KLM)  

COMSOL  FEM model 

Input specification 

Design an ultrasound linear array imaging probe with: 
– 144 element array, 0.245 mm pitch 

– 5 MHz central frequency 

– Wide frequency range:  2 – 11 MHz (@ -20 dB bandwidth) 

– Beam “steering” capability: greater than 20° from array axis 
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KLM and matching layers model 

• Equivalent network of a thickness-mode piezoelectric transducer 
• KLM model with transmission line network (Z: acoustical impedance) 
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KLM and matching layers design (1) 

• Thickness : equal to  /4 , where  is the central wavelength calculated in the n–
matching layer 

• Acoustic Impedance : Binomial or maximally flat response  
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Matching 
layer: 

Sound speed 
[m/s] 

Thickness 
[wavelength] 

Thickness 
[µm] 

Zn 
[MRayls] 

1st layer 1500  /4 75 µm 18.8 
2nd layer 1700  /4 85 µm 9.6 
3rd layer 2700  /4 135 µm 3.5 
4th layer 1800  /4 90 µm 1.8 
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Input bandwidth specification not satisfied 
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KLM and matching layers design (2) 

• Improve  the high frequency response without lowering the sound pressure level 
around the center frequency, through variation of  thickness and acoustic 
impedance of the matching layers  

Input bandwidth specification satisfied 

Matching 
layer: 

Sound speed 
[m/s] 

Thickness 
[wavelength] 

Thickness 
[µm] 

Zn 
[MRayls] 

1st layer 1500  /5 60 µm 8.5 
2nd layer 1700  /5.67 60 µm 6.0 
3rd layer 2700  /9 60 µm 3.0 
4th layer 1800  /6 60 µm 2.0 
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Piezoelectricity in COMSOL 
The constitutive equations for a piezoelectric material are (stress-charge form):  
(the superscripts indicates a zero or constant corresponding field) 

T: stress vector,  
c : elasticity matrix,  
S : strain vector,   
e : piezoelectric matrix,  
E : electric field vector,  
D : electric displacement vector, 
 : dielectric permittivity matrix.  

• Elasticity, piezoelectric and dielectric permittivity matrices must be specified to build the 
model in Comsol 

• Manufacturer data are often incomplete and should be checked for the particular 
operating condition of the piezoelectric material  

• Physical insight is the starting point for the model 
• Optimization procedure should be used 



COMSOL Conference, Stuttgart 2011 

Design and Optimization of a high 
performance ultrasound imaging probe 

10 10 

  

 
VZ
I



where jy  is the current density component along y axis.  

Electric impedance in COMSOL 
The electrical impedance Z of a piezoelectric plate can be expressed by the general ohm law: 

V: potential difference voltage across   
the two plate faces  
I: current flowing between plate faces 

As regard the electric current flowing in the plate,the following integral holds: 

This integral has been used in COMSOL as integration variable across the plate surface, in 
order to use the optimization module with objective function given by the difference of 
measured and simulated electrical impedance. 
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Piezoelectric characterization with COMSOL 
• Piezoelectric plate alone 
• Electrical impedance comparison between measurement (solid) and simulation (dashed) 
• Determination of matrices [c], [e] and [] from FEM analysis 
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Agreement between FEM simulation and measurements are excellent 
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p is the pressure, 
c is the speed of sound in the 
medium.  

For homogeneous media and plate geometry, we have the (Helmholtz-Kirchhoff) far field 
pressure integral (neglecting the oscillating phase factor): 

Where k  is the wave number,  X,Y  is the position of observation point and  x,y  is the  
position on surface S (y=0) of the plate.  

Acoustics in COMSOL 
Pressure waves emitted from the piezoelectric transducer in a biological medium are solution 
to the wave equation (time domain): 
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Far field pressure calculation allows the reduction of the acoustic domain to a thin layer in 
front of the piezoelectric transducer, surrounded by PML (Perfectly Matched Layers). This 
turns into a tremendous cut of the computation time . 
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FEM Model in COMSOL 
• Transducer  COMSOL 2D FEM.  
• Red striped block: active piezoelectric element 
• Acoustic domain reduced to a small region surrounded by Perfectly Matched Layer 

(PML), which simulate the zero reflection condition. 
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Results: Far field pressure level 
• Far field sound pressure level (dB) at a distance of 60 mm from the transducer surface: 

measured (solid) and simulated (dotted). 
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Agreement between FEM simulation and measurements are very good 
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Far field pressure measurement set-up 
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Results: Directivity 
• Single element study: directivity determines focusing and beam steering capability 
• Directivity simulation vs. silicon rubber lens material elasticity 

The decrease of probe lens hyperelasticity leads to a larger radiation lobe 



COMSOL Conference, Stuttgart 2011 

Design and Optimization of a high 
performance ultrasound imaging probe 

17 17 

Results: Beam stearing capability 
• Delay function over x axis  
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Sound pressure level maps:  = 25° steered beam, F = 20 mm, freq. = 5 MHz, 12 active elements.  
Left: Standard silicon lens, Lamè  = 2 1010.   Right: Lower hyperelasticity lens, Lamè  = 1 1010  
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z axis 
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Both a mono dimensional electro-acoustical KLM and a 2D FEM model have 
been used to design an ultrasound linear imaging probe: 

  KLM  has been used to design the probe matching layer’s stack  

  FEM  has been used for the complete modeling of the probe 
 

Final results for the far field pressure level show a good agreement between 
measured and simulated performances, thus validating the modeling 
procedure for the probe  
 
Directivity and “beam steering” simulations prove that FEM can greatly help 
in understanding how probe performances could be improved. For example, it 
was possible to relate the mechanical properties of the acoustical lens of the 
probe to its steering capability. 

Conclusions 
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