Optical Ring Resonator Notch Filter
Application ID: 22221
In its simplest form, an optical ring resonator consists of a straight waveguide and a ring waveguide. The waveguides are placed close to each other, making the light affect each between the two structures. If the propagation length around the ring is an integral number of wavelengths, the field becomes resonant and a strong field builds up in the ring.
After propagation around the ring waveguide, some light couples back to the straight waveguide and interferes with the incident light. At resonance, completely destructive interference can be obtained, with no transmitted light. This makes the optical ring resonator an ideal notch filter, blocking the light at the resonant wavelength.
Optical ring resonators are promising building blocks for photonic integrated circuits. Due to the high refractive index contrast, available in, for instance, silicon photonics, very small circuits can be made.
This model calculates the spectral properties of an optical ring resonator. The model demonstrates how to use the Field Continuity boundary condition at boundaries, where there is a jump in the pre-defined phase approximation.
This model example illustrates applications of this type that would nominally be built using the following products:
however, additional products may be required to completely define and model it. Furthermore, this example may also be defined and modeled using components from the following product combinations:
The combination of COMSOL® products required to model your application depends on several factors and may include boundary conditions, material properties, physics interfaces, and part libraries. Particular functionality may be common to several products. To determine the right combination of products for your modeling needs, review the Specification Chart and make use of a free evaluation license. The COMSOL Sales and Support teams are available for answering any questions you may have regarding this.